• Title/Summary/Keyword: Radioisotope therapy

Search Result 61, Processing Time 0.018 seconds

Therapeutic radionuclides (치료용 방사성동위원소)

  • Choi, Sun-Ju;Hong, Young-Don;Lee, So-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.2
    • /
    • pp.58-65
    • /
    • 2006
  • Since the development of sophisticated molecular carriers such as octereotides for peptide receptor targeting and monoclonal antibodies against various antigens associated with specific tumor types, radionuclide therapy (RNT) employing open sources of therapeutic agents is promising modality for treatment of tumors. furthermore, the emerging of new therapeutic regimes and new approaches for tumor treatment using radionuclide are anticipated in near future. In targeted radiotherapy using peptides and other receptor based tarrier molecules, the use of radionuclide with high specific activity in formulating the radiopharmaceutical is essential in order to deliver sufficient number of radionuclides to the target site without saturating the target. In order to develop effective radiopharmaceuticals for therapeutic applications, it is crucial to carefully consider the choice of appropriate radionuclides as well as the tarrier moiety with suitable pharmacokinetic properties that could result in good in vivo localization and desired excretion. Up to date, only a limited number of radionuclides have been applied in radiopharmaceutical development due to the constraints in compliance with their physical half-life, decay characteristics, cost and availability in therapeutic applications. In this review article, we intend to provide with the improved understanding of the factors of importance of appropriate radionuclide for therapy with respect to their physical properties and therapeutic applications.

Radiopharmaceuticals for Imaging of Cellular Proliferation (세포 증식 영상용 방사성의약품)

  • Oh, Seung-Jun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.4
    • /
    • pp.209-223
    • /
    • 2002
  • By considering the biological properties of a tumor, it should be possible to realize better results in cancer therapy. PET imaging offers the opportunity to measure tumor growth non-invasively and repeatedly as an early assessment of response to cancer therapy. Measuring cellular growth instead of energy metabolism showed offer significant advantages in evaluating therapy. Thymidine and its derivative nucleoside compounds can be changed to mono, di- and tri- phosphate compounds by thymidine kinase and then be incorporated into DNA. Their bindings are increased in highly proliferating cells due to the high DNA synthesis rate. To evaluate cell proliferation, many kinds of thymidine and uridine derivatives have been labeled with positron emitter and radioactive iodine. Compared to radiopharmaceuticals which have radioisotope labeled base ring such as pyirmidine, the radiopharmacuticals which have radioisotope labeled sugar ring are more stable in vivo and have metabolic resistance. The biological properties such as DNA incorporation ratios are highly dependent on their chemical structures and metabolic processes. This overview describes synthesis of radiopharmaceuticals and their biological properties for imaging of tumor cell proliferation.

Synthesis and Evaluation of a Ligand Targeting the Somatostatin Receptor for Drug Delivery to Tumor Cell (암세포 내로의 약물 전달 증진 목적의 신규 소마토스타틴 수용체 타겟리간드 합성 및 평가)

  • Choi, SunJu;Hong, YoungDon;Lee, SoYoung;Jung, SungHee
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.193-198
    • /
    • 2015
  • Most of targeted therapies block the action of certain enzymes, proteins, or other molecules involved in the growth and spread of cancer cells to produce its cytotoxic effect. Either small molecule drugs or monoclonal antibodies are mostly used in targeted therapies. Unfortunately, targeted therapy has a certain degree of unwanted side effect like other cytotoxicity inducing chemotherapies. To overcome and to reduce unwanted side effects during a cancer therapy, recently radiopeptide therapies has got the worlds' attraction for the tumor targeting modalities due to its beneficial effect on less side effect compared to cytotoxic chemotherapies. Among radiopeptide therapies, $^{177}Lu$-DOTATATE is a major modality as an effective one invented so far in treating neuroendocrine tumor (NET) and it has been in clinical trials at least one decade. Although it does have rather effective therapeutic effect on NET, it has less effective in rather large solid tumor. There are many ways to improve or increase therapeutic effect of radiopeptide are a finding the potent small molecules to target the tumor site selectively, or a labeling with radioisotope of emitting high energy, or an improving its biological half-life by introducing different moieties to increase lipophilicity. Present study was focus to increase a biological half-life of radio somatostatin which will target the somatostatin receptor by altering the bifunctional chelator (BFCA) by introducing lipophilic moiety to the somatostatin, which would make the labeled peptide stay longer in the tumor site and thus it can intensify the therapeutic effect on tumor cell itself and around tissues.

Analysis of the Latest Trends of Radioisotope Using in RI-Biomics Fields (RI-Biomics분야 RI의 최신 동향 분석)

  • Jang, Sol-Ah;Yeom, Yu-Sun;Park, Tai-Jin;Hwang, Young Muk;Youn, Dol-Mi
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.221-224
    • /
    • 2013
  • RI-Biomics is a new compound word of radiation technology and Biomics related to the study of life. RI-Biomics is high radiation fusion technology by combining evaluation of pharmacokinetics in vivo (RI-ADME) of new drugs and medical materials using radioisotope and molecular imaging technology using nuclear medicine equipments. RI-Biomics fields are emerging with the increasing usage of radioisotopes (RI). In this paper, we investigated the latest trends of radioisotope using in RI-Biomics fields. The representative radioisotopes are $^{14}C$, $^3H$ and $^{32}P$ for the optimization and the selection of candidates in the development process of new drugs among the RI-Biomics fields. As shown in the status of accumulated income of radioisotopes, using amounts of radioisotopes are showing a tendency to increase every year. $^{14}C$ is 61.6% increase of accumulated income growth rate and $^3H$ increased by 58.8% and $^{32}P$ increased by 33.9% in 2012 compared to 2007. These isotopes are used in a variety of fields as using of $^{14}C$ for microdosing test, development of [$^3H$]cholesterol absorption inhibitors, study of [$^{131}I$]pyronaridine tetraphosphate for malaria therapy. These are going on in vivo test sucessfully. So, clinical research step is expected to begin soon. Therefore, usages of radioisotopes are necessary and need for the evaluation of pharmacokinetics, optimization and the selection of new drug candidates in the development process of new drugs among the RI-Biomics fields. So, using of radioisotopes is predict to increase continuously except for primarily used $^{14}C$, $^3H$.

[ $^{188}Re$ ]-Labeled Radiopharmaceuticals ($^{188}Re$ 표지 방사성의약품)

  • Jeong, Jae-Min
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.5
    • /
    • pp.293-300
    • /
    • 2001
  • The search for an ideal radioisotope for radiotherapy continues. As a generator-produced radioisotope emitting both beta and gamma rays with a short physical half-life of 16.9 hr, $^{188}Re$ is an excellent candidate for radiotherapy. Its applications Include the irradiation of coronary artery to prevent restenosis, treatment of rheumatoid arthritis, treatment of peritoneal effusion, palliation of metastatic bone pain, and treatment of liver cancer.

  • PDF

Clinical Investigation and Treatment of Thyroid Diseases with Radioactive Iodine($^{131}I$) -Report 4- (방사성동위원소옥소(放射性同位元素沃素)($^{131}I$)에 의(依)한 갑상선질환(甲狀腺疾患)의 임상적연구(臨床的硏究) -제 4 보-(第 4 報))

  • Kim, M.H.;Lee, B.H.;Chung, K.T.;Chang, K.J.;Kim, M.J.;Lee, J.K.;Lee, M.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.1 no.1
    • /
    • pp.67-78
    • /
    • 1967
  • Over the past 6 years, from May 1960 to June 1966, 1,716 patients with various diseases of thyroid were examined and thyroid function tests with $^{131}I$ were done. Among them, 545 patients with hyperthyroidism were treated with $^{131}I$. A summary of the clinical data of the $^{131}I$-thyroid function tests and the therapeutic results of $^{131}I$ were presented and discussed. 1. The patients examined consisted of; 596 cases(34.7%) with toxic diffuse goiter, 412 cases(24.0%) with non-toxic nodular goiter, 278 cases(16.2%) with euthyroidism, 236 cases(13.8%) with non-toxic diffuse goiter, 89 cases(5.2%) with hypothyroidism, 53 cases(3.1%) with toxic nodular goiter, 32 cases(1.9%) with thyroiditis and 20 cases(1.2%) with dyshormonogenesis. 2. There were 218(12.7%) male patients and 1,498(87.3%) female patients, showing a ratio of 1:6.9. female predominantly. 3. The majority of patients(79.6%) were in the 3rd through 5th decades of their lives showing the peak in the 4th decades(35.9%). 4. The diagnostic values and normal ranges of $^{131}I$ uptake test, 48 hour serum activity, $T_3$ red blood cell uptake and $PB^{131}I$ conversion ratio were discussed. 5. An attention was given to dyshormonogenesis, a qualitative hypothyroidism, due to its characteristic findings of clinical and $^{131}I$ thyroid function tests, and its pathogenesis was briefly reviewed. 6. Among 545 patients with hyperthyroidism treated with $^{131}I$, 68.3% was cured after single. therapeutic dose and another 24.0% was cured after second dose. 7. The complications of $^{131}I$ therapy were discussed in some details and myxedema had developed. in 3.9% of our cases. No thyroid cancer was found after $^{131}I$ therapy.

  • PDF

Validation of the production quality and therapeutic efficacy of 47Sc through its anti-cancer effects against EGFR-targeted non-small cell lung cancer

  • Da-Mi Kim;So-Young Lee;Jae-Cheong Lim;Eun-Ha Cho;Ul-Jae Park
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.1
    • /
    • pp.9-15
    • /
    • 2022
  • Anti-cancer and therapeutic effects using therapeutic radioisotopes have been demonstrated by various studies, and it is well-known that therapeutic radioisotopes are useful in cancer treatment. Recently, one of the therapeutic radioisotopes, scandium is emerging as a radioisotope applicable to PET imaging (43Sc, 44Sc) and therapy (47Sc) in cancer theranostic approach. However, 47Sc has little known radiobiological and therapeutic efficacy compared to other therapeutic radioisotopes. Here, we investigated the quality and therapeutic efficacy of 47Sc radioisotope produced by our production/isolation technology at the research reactor 'HANARO' in KAERI (Korea Atomic Energy Research Institute). We showed that the therapeutic efficacy of 47Sc, produced by our production/isolation technology, effectively suppressed epidermal growth factor receptor (EGFR)-targeted non-small cell lung cancer (NSCLC) cells. Consequently, these results suggest that the high quality of the produced 47Sc by our production/isolation technology enables the development of therapeutic strategies for cancer treatment and radiopharmaceuticals using 47Sc.

Current status of research on radionuclides used in nuclear mediccine (중성자선 실험 및 발암연구의 현황과 미래)

  • Kim, Hui-Seon
    • Radioisotope journal
    • /
    • v.21 no.3
    • /
    • pp.46-60
    • /
    • 2006
  • In recent years the progress of nuclear medicine advanced dramatically in imaging and targeted radionuclide therapy is able to open op exciting perspectives as standard diagnostic and therapeutic modalities, complementing conventional modalities. Positron emission tomography/computed tomography (PET/CT) technology with FDG has been developed clinically in less than 10 years as a routine standard in oncological imaging, including a number of other fluorinated radiopharmaceuticals being evaluated for their ability to complement FDG. However, the limitation of FDG-PET such as non-specific uptake and its short half-life is not compatible with the time necessary for optimal tumour targeting. Therefore, a development of innovative positron-emitting radionuclides with half-lives longer than 10 h is needed. For therapeutic applications, the injection of higher activities is required to reach efficient adsorbed doses in radioresistant solid tumours, while limiting the irradiation of vital organs. In this application, the longer half-life of radiolsotopes are more fit well for radionuclide therapy. To achieve this, researches have to be carried in a largor spectrum of radionuclides for diagnosis and therapy. In the context of rapidly growing nuclear medicine and strong demanding innovative radionuclides, a high-energy (100 MeV), high-intensity (-mA) accelerator with proton (PEFF at KAFRI). will be operating in 2011. The priorities of PEFP will include supporting the nuclear medicine research community by providing those radionuclides with current limited availability by means of a high-energy, high-intensity accelerator.

  • PDF

Photodynamic Therapy for Cancer without External Light Illumination by Utilizing Radioisotope-induced Cerenkov Luminescence as an Excitation Source

  • Chi Soo Kang;Md. Saidul Islam;Dohyeon Kim;Kyo Chul Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2023
  • Photodynamic therapy (PDT), in which a photosensitizer (PS), light, and molecular oxygen are essential components, is a non-invasive and highly effective cancer therapeutic method. However, PDT suffers from the penetration limit of light caused by attenuation and scattering of light through tissues constraining its use to skin and endoscopically accessible cancers. Cerenkov luminescence (CL) is defined as the light illuminated when charged particles move in a dielectric medium at a velocity greater than the phase velocity of light. It is known that medical radioisotopes in preclinical and clinical settings have enough energy to generate CL, and lately, CL has been exploited as an excitation source for PDT without external light illumination. This review introduces state of the art studies of radioisotope-based PDT for cancer, in which radioisotopes are utilized as a light source.

KCCH Medical Cyclotron Operation for Neutron Therapy and Isotope Production (1989) - A Technical Report - (중성자 치료와 동위원소 생산을 위한 KCCH 의학용 싸이클로트론의 운영 (1989))

  • Kim, Byung-Mun;Kim, Young-Sear;Bak, Joo-Shik;Lee, Jong-Du;Yoo, Seong-Yul;Koh, Kyung-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 1990
  • After four years of planning, equipment acquisition, facility construction and beam testing, the KCCH cyclotron facility was put into operation in November1986. Now the KCCH cyclotron(MC-50) has been used for four years in neutron therapy and radioisotope production. Up to December 1989, 179(1852 sessions) patient have undergone neutron therapy. Radioisotope production for nuclear medicine use was started from March 1989 after extensive work to overcome target transport, target melting, beam diagnostic and chemical processing problems. This status report introduces the cyclotron facility, and the experiences of neutron therapy and isotope production with the MC-50 cyclotron. Besides, the operation results and the general troubles of the MC-50 during 1989 are summarized. Total operation time was 1252.5 hours. Four hundred hours were used for neutron therapy of 599 treatment sessions and 832.5 hours for radioisotope production. Total amount of produced raioisotope was 1695 mCi(Ga-67 : 1478mCi, Tl-201 : 107 mCi, I-123 : 25mCi, In-111 : 85mCi). Twenty hours were used for scheduled beam testing. In 1989, 882% of the planned operation were performed on schedule and this rats is improved remarkably compared to 71.0% in 1988.

  • PDF