• Title/Summary/Keyword: Radioactive rays

Search Result 65, Processing Time 0.029 seconds

A Study on the X-ray Image Reading of Radiological Dispersal Device (방사능 폭발물의 X-ray 영상판독에 관한 연구)

  • Geun-Woo Jeong;Kyong-Jin Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.437-443
    • /
    • 2024
  • The purpose of radiological Dispersal Device(RDD) is to kill people by explosives and to cause radiation exposure by dispersing radioactive materials. And It is a form of explosive that combines radioactive materials such as Co-60 and Ir-192 with improvised explosives. In this study, we tested and evaluated whether it was possible to read the internal structure of an explosive using X-rays in a radioactive explosive situation. The improvised explosive device was manufactured using 2 lb of model TNT explosives, one practice detonator, one 9V battery, and a timer switch in a leather briefcase measuring 41×35×10 cm3. The radioactive material used was the Co-60 source used in the low-level gamma ray irradiation device operated at the Advanced Radiation Research Institute of the Korea Atomic Energy Research Institute. The radiation dose used was gamma ray energy of 1.17 MeV and 1.33 MeV from a Co-60 source of 2208 Ci. The dose rates are divided into 0.5, 1, 2, and 4 Gy/h, and the exposure time was divided into 1, 3, 5, and 10 minutes. Co-60 source was mixed with the manufactured explosive and X-ray image reading was performed. As a result of the experiment, the X-ray image appeared black in all conditions divided by dose rate and time, and it was impossible to confirm the internal structure of the explosive. This is because γ-rays emitted from radioactive explosives have higher energy and stronger penetrating power than X-rays, so it is believed that imaging using X-rays is limited By blackening the film. The results of this study are expected to be used as basic data for research and development of X-ray imaging that can read the internal structure of explosives in radioactive explosive situations.

Development of radioactive prospecting as tool for evaluating degree of granitic rocks weathering

  • Ishida Satoshi;Tsuchihara Takeo;Imaizumi Masayuki;Ohnishi Ryouichi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.416-421
    • /
    • 2003
  • To develop an easy, low-cost method for evaluating the degree of weathering by radioactive prospecting, radioactive prospecting and the investigation of the degree of weathering were carried out in the southern Kitakami massif of Iwate Prefecture, Japan, in which weathering granitic rocks was distributed. Fifty outcrops in the study area were selected, and strength of the gamma-rays emitted from the weathering bedrock of $^{40}K,\;^{214}Bi,\;and\;^{208}Tl$ was measured for 15 minutes at each point. At the same points, soil hardness was measured on the surface of the outcrop with a Yamanaka soil penetration tester. In addition, 100cc samples of each outcrop were taken with the sampler. The samples were analyzed by XRD, and the kind of the rock-forming minerals containing K was identified. We then compared the degree of weathering and the radioactive prospecting results by using K as an indicator. The relation between $^{40}K/^{208}Tl$ gamma rays counting rate by the radioactive prospecting and the hardness index showed a positive correlation as a result of the investigation, and the correlation coefficient ($R^2$) was 0.67.Moreover, when $^{40}K/^{208}Tl$ gamma rays counting rate emitted from the bedrock was low, the number of rock-forming mineral species containing K was also low. Thus, it was found that $^{40}K/^{208}Tl$ gamma rays counting rate measured by the radioactive prospecting could be used as an indicator of the degree of weathering.

  • PDF

A Study on the Radioactive Products of Components in Proton Accelerator on Short Term Usage Using Computed Simulation (몬테칼로 시뮬레이션을 활용한 양성자가속기 단기사용 시 구성품의 방사화 평가)

  • Bae, Sang-Il;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.389-395
    • /
    • 2020
  • The evaluation of radioactivated components of heavy-ion accelerator facilities affects the safety of radiation management and the exposure dose for workers. and this is an important issue when predicting the disposal cost of waste during maintenance and dismantling of accelerator facilities. In this study, the FLUKA code was used to simulate the proton treatment device nozzle and classify the radio-nuclides and total radioactivity generated by each component over a short period of time. The source term was evaluated using NIST reference beam data, and the neutron flux generated for each component was calculated using the evaluated beam data. Radioactive isotopes caused by generated neutrons were compared and evaluated using nuclide information from the International Radiation Protection Association and the Korea Radioisotope association. Most of the nuclides produced form of beta rays and electron capture, and short-lived nuclides dominated. However, In the case of 54Mn, which is a radioactive product of iron, the effect of gamma rays should be considered. In the case of tritium generated from a material with a low atomic number, it is considered that handling care should be taken due to its long half-life.

Determination of Attenuation Collection Methods According to the Type of Radioactive Waste Drums (방사성폐기물드럼 종류별 감쇠보정방법의 결정)

  • Kwak, Sang-Soo;Choi, Byung-I1;Yoon, Suk-Jung;Lee, Ik-Whan;Kang, Duck-Won;Sung, Ki-Bang
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.309-317
    • /
    • 1997
  • The measured radioactivity of gamma-emitting radionuclides in each radioactive waste drum using the non-destructive waste assay method is underestimated than real radioactivity in radioactive waste drum because the gamma-rays are attenuated within the medium. Therefore, the measured radioactivity should be corrected for the attenuation of gamma-rays. For the correction of the attenuation of gamma-rays, the attenuation correction method should be applied differently by considering the distribution and density of medium in radioactive wastes drum generated from nuclear power plants. In this study, the model drums were fabricated for simulating five types of radioactive waste drums generated from nuclear power plant and the optimum methods of the attenuation correction were experimentally determined to analyze the activity of radionuclides in the waste drum accurately using the segmented gamma scanning system. With the determination of the attenuation correction methods from the experimental results the transmission method and the average density method for the miscellaneous waste drum, the transmission method and the differential peak absorption method for the shielded miscellaneous waste drum were used to measure the density of medium in waste drums. Also, the average density method and the differential peak absorption method for the spent resin drum, the paraffin solidified drum, and the spent filter drum were used.

  • PDF

The potential of X-ray irradiation as a new pasteurization technology for food (식품 살균을 위한 X선 조사 기술의 활용 및 전망)

  • Lim, Jong-Seong;Ha, Jae-Won
    • Food Science and Industry
    • /
    • v.53 no.3
    • /
    • pp.264-276
    • /
    • 2020
  • Ionizing radiation is one of the efficient non-thermal pasteurization methods. The US Food and Drug Administration (FDA) allows the use of ionizing radiation to a dose up to 10 kGy for controlling foodborne pathogens and extending the self-life of foods. Recently X-rays, generated on absorption of high energy electrons in an appropriate metal target, have been used commercially for sterilization purposes. X-rays have the advantages of higher penetration power than E-beams and absence of harmful radioactive sources, such as Cobalt-60 or Cesium-137 associated with gamma-rays. That is why it has continued to receive attention as an attractive alternative to gamma-ray or E-beam irradiation. In this article, the potential of X-ray irradiation for controlling foodborne pathogens in various food products and necessary pre-requisite knowledge for the introduction of X-ray irradiation to the Korean food industry will be provided.

Analysis of Dose by Items According to Act on Safety Control of Radiation Around Living Environment (생활주변방사선안전관리법 시행에 따른 항목별 선량 분석)

  • Jeong, Cheonsoo;Oh, Hyunji;Lee, Jieun;Jo, Sumin;Park, Sohyun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.377-381
    • /
    • 2013
  • The study attempted to analyze items presented in Act on safety control of radioactive rays around living environment, which has been recently enacted. The test items have been divided into cosmic rays, cosmic rays, terrestrial radiation, and byproduct, etc., and the selected locations for measurement included an airplane at 8000m in the air, mountainous area at 1000m above sea level, 15m-underground building, construction site, and seashore at 0m altitude. The test showed that, based on cosmic rays, plane at 8000m in the air had 4.91mSv/y of effective dose per year. The mountainous area at 1000m above sea level, which was chosen to measure cosmic rays and terrestrial radiation, was measured 0.35mSv higher than the seashore at 0m in altitude due to the effect of cosmic rays and terrestrial radiation from the greater height above sea level. The construction site, chosen as a location to measure byproduct, showed the highest value among the items with 6.66mSv, which is as 10times high as that of a completed building. The seashore at 0m in altitude had 5.96mSv, and, 15m-underground building, based on terrestrial radiation, was the lowest with 4.91mSv. This suggests that, despite the assumption that terrestrial radiation will have greater effect deeper underground, it did not affect inside the building significantly. This study showed that the items presented in Act on safety control of radioactive rays around living environment were not close to effective dose limit for radiation workers proposed by ICRP. However, they were between 4 and 7 times higher than that for general public. This suggests that there should be continuous research on and attention to Safe Management of Daily Surrounding Radiation Act, which is still at its beginning stage.

Estimation of nuclear heating by delayed gamma rays from radioactive structural materials of HANARO

  • Noh, Tae-yang;Park, Byung-Gun;Kim, Myong-Seop
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.446-452
    • /
    • 2018
  • To improve the accuracy and safety of irradiation tests in High flux Advanced Neutron Application ReactOr (HANARO), the nuclear energy deposition rate, which is called nuclear heating, was estimated for an irradiation capsule with an iridium sample in the irradiation hole in order. The gamma rays emitted from the radioisotopes (RIs) of the structural materials such as flow tubes of fuel assemblies and heavy water reflector tank were considered as radiation source. Using the ORIGEN2.1 code, emission rates of delayed gamma rays were calculated in consideration of the activation procedure for 8 years and 2 months of HANARO operation. Calculated emission rates were used as a source term of delayed gamma rays in the MCNP6 code. By using the MCNP code, the nuclear heating rates of the irradiation capsules in the inner core, outer core, and heavy water reflector tank were estimated. Calculated nuclear heating in the inner core, outer core, and heavy water reflector tank were 200-260 mW, 80-100 mW, and 10 mW, respectively.

Characteristic Evaluation of Exposed Dose with NORM added Consumer Product based on ICRP Reference Phantom (ICRP 기준팬텀 기반의 천연방사성핵종이 포함된 가공제품 사용으로 인한 피폭선량 특성 평가)

  • Yoo, Do Hyeon;Lee, Hyun Cheol;Shin, Wook-Geun;Choi, Hyun Joon;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.159-167
    • /
    • 2014
  • In Korea, July 2012, the law as called 'Act on Safety Control of Radioactive Rays Around Living Environment' was implemented to control the consumer product containing Naturally Occurring Radioactive Material (NORM), but, there are no appropriate database and effective dose calculation system. The aim of this study was to develop evaluation technique of the exposure dose with the use of the consumer products containing NORM and to understand the characteristics of the exposed dose according to the radiation type and energy. For the evaluate of exposure dose, the ICRP reference phantom was simulated by the MCNPX code based on Monte Carlo method, and the minimum, medium, maximum energy of alphas, betas, gammas from the representative NORM of Uranium decay series were used as the source term in the simulation. The annual effective doses were calculated by the exposure scenario of the consumer product usage time and position. Short range of the alpha and beta rays are mostly delivered the dose to the skin. On the other hand, the gamma rays mostly delivered the similar dose to all of the organs. The results of the annual effective dose with $1Bq{\cdot}g^{-1}$ radioactive stone-bed and 10% radioactive concentration were employed with the usage time of 7 hours 50 minute per day, the maximum annual effective dose of alphas, betas, gammas were calculated 0.0222, 0.0836, $0.0101mSv{\cdot}y^{-1}$, respectively.

Feasibility Study on Development of a Fiber-Optic Dual Detector to Measure Beta- and Gamma-rays Simultaneously (베타/감마 동시 측정용 광섬유 이중 검출기의 개발을 위한 기초연구)

  • Hong, Seunghan;Shin, Sang Hun;Sim, Hyeok In;Kim, Seon Geun;Jeon, Hyesu;Jang, Jaeseok;Kim, Jaeseok;Kwon, Guwon;Jang, Kyoung Won;Yoo, Wook Jae;Lee, Bongsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.284-290
    • /
    • 2014
  • A fiber-optic beta/gamma dual detector system with two types of sensing probes was fabricated to detect the beta- and gamma-rays simultaneously. As scintillators of the sensing probe type 1, two different inorganic scintillators, $CaF_2(Eu)$ and LYSO(Ce) crystals, were used to obtain the each scintillating efficiency with respect to beta-and gamma-rays and the inherent energy spectra of radioactive isotopes. In the case of the sensing probe type 2, which is composed of two identical inorganic scintillators and a beta shielding material based on the lead, it could discriminate beta- and gamma-rays using a subtraction method. In conclusion, we demonstrated that the proposed fiber-optic beta/gamma dual detector could measure and discriminate beta- and gamma-rays using both energy spectroscopy and subtraction method.