• Title/Summary/Keyword: Radioactive contamination

Search Result 194, Processing Time 0.054 seconds

Comparison of Environmental Radiation Survey Analysis Results in a High Dose Rate Environment Using CZT, NaI(Tl), and LaBr3(Ce) Detectors

  • Sungyeop Joung;Wanook Ji;Eunjung Lee;Young-Yong Ji;Yoomi Choi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.543-558
    • /
    • 2023
  • Currently, Japan is undertaking a nationwide project to measure and map radioactive contamination around Fukushima, as part of the efforts to restore normalcy following the nuclear accident. The Japan Atomic Energy Agency (JAEA) manages the Fukushima Environmental Safety Center, located approximately 20 km north of the Fukushima Daiichi nuclear power plant in Minamisōma City, Fukushima Prefecture. In collaboration with the JAEA, this study involved conducting comparison experiments and analyses with radiation detectors in high radiation environments, a challenging task in Korean environments. Environmental radiation surveys were conducted using three types of detectors: CZT, NaI(Tl), and LaBr3(Ce), across two contaminated areas. Dose rate values were converted using dose rate conversion factors for each detector type, and dose rate maps were subsequently created and compared. The detectors yielded similar results, demonstrating their feasibility and reliability in high radiation environments. The findings of this study are expected to be a crucial reference for enhancing the verification and supplementation of procedures and methods in future radiation measurements and mobile surveys in high-radiation environments, using these three types of radiation instruments.

Preparation of polymeric composites for surface contamination measurement in order to characterize nuclear facilities decommissioning (원자력시설 해체 시 특성평가를 위한 표면오염 탐지 이중구조 고분자 복합체의 제조)

  • 한명진;서범경;우주희;이근우
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.97-104
    • /
    • 2004
  • Double-layered polysulfone composite films, containing cerium activated yttrium silicate (CAYS) as a flour, were prepared from double casting of two polymeric solutions, and their morphology and physical strength were superior to those of single-layered composites. The prepared polymeric films consist of a dense bottom layer and a CAYS-holding top layer. The former is made of coagulating the polysulfone and methylene chloride binary solution and works as a supporter to improve the composite's physical strength, while the latter holding the inorganic fluor plays a role as an active site to detect the radioactive contamination. The prepared films revealed two distinguished, but tightly attached, double layers, their attachment being identified by morphology of the interface between two layers. As prepared by water immersion coagulation, the films have highly developed macropores, compared with a dense structure in the film prepared by evaporation. In the radionuclide detection test of the CAYS-impregnated composites, the films have reliable detection capacity at a radionuclide spotting test. The double-layered composites with the dense support layer show a better stability in holding the radionuclides spotted on the surface as well as an improvement in physical strength, compared with the single-layer composites having shortcomings such as being too porous or being brittle.

  • PDF

Effect of Coating Technique on the Characteristics of ZnS(Ag) Scintillation Composite for Alpha-ray Detection (알파선 측정용 ZnS(Ag) 섬광 복합체의 특성에 있어 도포방법이 미치는 영향)

  • Jung, Yeon-Hee;Park, So-Jin;Seo, Bum-Kyoung;Lee, Kune Woo;Han, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.604-608
    • /
    • 2006
  • Polymer composites for measuring the radioactive contamination are prepared by coating ZnS(Ag) powders as a scintillator on polysulfone base layer. The composites consist of the active layer for a scintillation reaction with radioactive wastes and the transparent support layer for transmittance of light photons emitted by scintillation in the active layer. The binding of the active layer, including ZnS(Ag), on the support layer is proceeded via coating with polysulfone as a binder, without any extra adhesive. The coating was obtained by either casting via a Doctor Blade as applicator or screen printing. The prepared composites feature a monolithic structure, resulting in the complete adhesion between two layers. The composite prepared by the casting technique using an applicator holds a good detection efficiency in measuring the alpha radionuclide, but its structure becomes fragile because of warping in morphology. On the contrary, the composite prepared by the screen printing shows a good detection capacity as well as a good stability in a mechanical shape.

Determine the hazards of radioactive elements and radon gas manufacturing processes in an Egyptian fertilizer factory

  • Soad Saad Fares
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1781-1795
    • /
    • 2024
  • This study investigated the levels of radioactivity in soil surrounding a phosphate fertilizer factory in Egypt, aiming to assess potential risks to the population exposed to radiation. Concentrations of 238U, 226Ra, 232Th, and 40K were measured in soil samples collected from two subsites: one near the factory (subsite 1) and another further away (subsite 2). Two different systems were used for measuring radioactivity, a high-purity gamma ray spectroscopy system with an HPGe detector for gamma-emitting isotopes and a CR-39 solid nuclear track detector for alpha-emitting radon gas. Subsite 1, located close to the factory, displayed significantly elevated levels of 226Ra compared to global background levels (514 and 456 Bq/kg vs. 35 Bq/kg). Additionally, the concentrations of 238U (241.06 Bq/kg vs. global average 35 Bq/kg), 232Th (16.15 Bq/kg vs. global average 30 Bq/kg), and 40K (146.36 Bq/kg vs. global average 400 Bq/kg) were all above global averages. Furthermore, a high concentration of radon gas (337.06 μSv/y) was measured at subsite 1. The strong positive correlation observed between 226Ra and 238U (0.96256) provides further evidence of potentially elevated radioactivity levels near the factory. In contrast, subsite 2, situated farther from the factory, exhibited natural radioactive background levels within international limits. Quantitative analysis revealed that gamma ray absorbed doses for 226Ra and 232Th exceeded global averages in some samples. Specifically, 226Ra doses ranged from 7.8 to 46.26 ppm (exceeding the 20 ppm global average in some cases), and 232Th doses ranged from 1.98 to 9.14 ppm (exceeding the 10 ppm global average in some cases). The concentration of 40K, however, remained within the global range (0.07%-0.69 %). The observed imbalances in the ratios of Th/U (0.17-0.24 Bq/kg and 0.73-0.24 ppm) and U/Ra (0.81-0.73 Bq/kg and 0.73-0.17 ppm), both of which are significantly lower than their respective global averages of 4 and 2.4, point towards the presence of fertilizer-derived contamination. This conclusion is further supported by the high phosphate concentrations detected in the samples. Overall, this study suggests that radioactive contamination near the phosphate fertilizer factory significantly exceeds global background levels and international limits in some cases. This raises concerns about potential risks posed to surrounding agricultural land and crops.

Investigation on the petroleum contamination by using Rn-222 tracer (라돈 추적자를 이용한 유류오염에 대한 연구)

  • Yoon, Yoon-Yeol;Koh, Dong-Chan;Lee, Kil-Yong;Cho, Soo-Young;Ko, Kyung-Seok
    • Analytical Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2012
  • Rn-222 was used as a natural radioactive isotope tracer to evaluate non-aqueous phase liquid(NAPL) contaminated soil and aquifer. In the case of soil sample, Rn-222 concentration was inversely decreased with diesel concentration in the granite soil sample and it was decreased about 30% at the 13% diesel contaminated soil. For evaluating trichloroethylene (TCE) contaminated aquifer, the natural radioisotope Rn-222 was used as naturally occurring partitioning tracer for the approximate localization and semiquantitative assessment of the TCE source zone. Rn-222 was analyzed for the estimation of TCE contamination ranges of the acquifer in the contaminated site at Wonju in Korea.

A SE Approach to Designing and Developing of Motion Control for Radioactive Waste Decontamination

  • Ngbede, Utah Michael;Olaide, Oluwasegun Adebena;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • Decontamination of systems, structures and components (SSC) during the decommissioning of a Nuclear Power Plant (NPP) can be for a variety of reasons. The main reasons for decontamination are: to reduce the contamination of SSC to a reasonably low level, to reduce the potential for the spread of contaminants into the environment and to reduce the cost of disposal due to the reduced level of contamination in a particular SSC. The decontamination technique can be aggressive or non-aggressive depending on the intent after the decontamination process. Aggressive decontamination technique is used when the intent is not to reuse the SSC while a non-aggressive decontamination technique is used with the intent of SSC reuse. For different SSCs there are different decontamination techniques that can be used, each having its own advantages and drawbacks. Metal components such as pipes in the nuclear power plant account for a large amount of nuclear wastes generated. Some of these wastes can be reused if the contaminant level is reduced to an acceptable level. Laser ablation is a non-aggressive decontamination technique that can be used to reduce the contamination in pipes to an acceptable level with no secondary waste generated during the process. The operation and control of a laser ablation device must be precise to achieve a high decontamination factor. This precision can be achieved by a well-designed motion control system. For this purpose, a motion control system was developed consisting of two parts: the first part being the precise control of the laser ablation device inside the pipe and the second part is the control of the laser ablation device outside the pipe. This paper describes the Systems Engineering approach for the development process of a motion control system for the Laser decontamination system.

Study on Consideration of Artificial Rain Technology in Aspect of National Security (국가안보측면으로서의 인공강우기술 고찰)

  • Choi, Kee-Nam;Lee, Sun-Je
    • Convergence Security Journal
    • /
    • v.12 no.2
    • /
    • pp.99-106
    • /
    • 2012
  • March 11, 2010, in Japan located over East Sea of Korea, due to the strong earthquake tsunami, Fukushima Nuclear Power Plant was ceased and exploded resulting in leaking radioactive substances. Even though it was an accident happened in a nation, leaked radioactive substances were spread across the world moving along ocean currents and air current. Our nation also had terror and confusion about radioactive rain after the accident, and even though a year has been passed by after the accident, the problem on the radioactive contamination isn't solved. So to speak, nuclear accident of neighboring country is a threat to our nation but not only Japan but also Chinese ocean across the West Sea has nuclear power plants. Beside threat of nuclear accident of neighboring countries, North Korea in military confrontation is the world 3rd country holding chemical and biological weapons and can spray the biological weapons to South Korea at any time like Yeonpyeong-do bombard provocation in November, 2010. The study is the strategy confronting such threats and grafted artificial rain technology which is weather control technology. Since radioactive substances on radioactive accidents and North Korean biological weapons can differ in the density by the weather condition, only artificial rain technology can remove the threat perfectly but it is worth to try as the method to reduce damage and in the aspect of psychology. To use the artificial rain technology in the aspect of national security to acquire the public safety, research institutes such ADD should fulfill active and symbolic technology research development.

Analysis of Radioactive Contamination Normal Level of Numerical Isotope using Clustering Methods (클러스터링 방법을 이용한 방사능 정상수치의 동위원소별 오염 분석)

  • Jung, Yong-Gyu;Choi, Jung-Ah;Cha, Byung-Heun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.41-46
    • /
    • 2014
  • As the radioactive-related incidents have been occurred frequently such as Fukushima nuclear exposure incident, it is always considered radioactivity normal levels in radiation exposure as a most risk components at several government agencies. In this paper, the data were analyzed by information in the data beyond range of the attributes. The clustering analysis method is used by EM and SimpleKMeans algorithm. The experimental results about US Radioactive associated data is depending on the method of data analysis. It can be seen that the method of the algorithm is different depending on local value of the normal range. The governments need to pay attention to increase the investigation frequency.

Characteristics of regional scale atmospheric dispersion around Ki-Jang research reactor using the Lagrangian Gaussian puff dispersion model

  • Choi, Geun-Sik;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny;Kim, Ki-Hyun;Lee, Jin-Hong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.68-79
    • /
    • 2018
  • The Ki-Jang research reactor (KJRR), a new research reactor in Korea, is being planned to fulfill multiple purposes. In this study, as an assessment of the environmental radiological impact, we characterized the atmospheric dispersion and deposition of radioactive materials released by an unexpected incident at KJRR using the weather research and forecasting-mesoscale model interface program-California Puff (WRF-MMIF-CALPUFF) model system. Based on the reproduced three-dimensional gridded meteorological data obtained during a 1-year period using WRF, the overall meteorological data predicted by WRF were in agreement with the observed data, while the predicted wind speed data were slightly overestimated at all stations. Based on the CALPUFF simulation of atmospheric dispersion (${\chi}/Q$) and deposition (D/Q) factors, relatively heavier contamination in the vicinity of KJRR was observed, and the prevailing land breeze wind in the study area resulted in relatively higher concentration and deposition in the off-shore area sectors. We also compared the dispersion characteristics between the PAVAN (atmospheric dispersion of radioactive release from nuclear power plants) and CALPUFF models. Finally, the meteorological conditions and possibility of high doses of radiation for relatively higher hourly ${\chi}/Q$ cases were examined at specific discrete receptors.

A Study on the Decontamination Performance of Cesium by Soil Washing Process With Flocculating Agent (응집제를 적용한 토양세척 공정에서의 세슘 제염 성능 평가 연구)

  • Song, Jong Soon;Kim, Sun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2018
  • Radioactive substances, especially $^{137}Cs$ discharged in the course of Nuclear Power Plant Accident or maintenance of power plants, cause contamination of the soil. For habitation of residents and reuse of industrial land, it is inevitably necessary to decontaminate the soil. This study examines a soil washing process that has actually been used for washing of radioactive-contaminated soil. The soil washing process uses a washing agent to weaken surface tension of the soil and cesium, separating cesium from the soil. In this study, in order to raise the efficiency of the process, a flocculating agent was added to the washing water to remove fine soil and cesium. The cesium concentrations before and after applying the flocculating agent to cesium solution were measured through ICP-OES. When using 0.1 g of J-AF flocculating agent in the experiment, the maximum Cs removal performance was approximately 88%; the minimum value was 67%. Species combinations between cesium and soil were predicted using Visual MINTEQ Code; the ability to reuse the washing water or not, and the removal rate of the fine soil, determined via measurement of the turbidity after applying the flocculating agent, were determined.