• Title/Summary/Keyword: Radioactive cesium

Search Result 124, Processing Time 0.029 seconds

Studies on the Sorption and Fixation of Cesium by Vermiculite

  • Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.310-320
    • /
    • 1973
  • The sorption and fixation of cesium in dilute solutions by vermiculite saturated with Na or K were studied in order to investigate any possibibty of its use in radioactive effluent treatment. The cesium sorbed by vermiculite with the increase in pH is attributed to the increase of sorption surface as a result of the dispersion. The increased cesium sorption by Na-vermiculite is due to the different sorption rates by the different exchange sites : external surface and internal surface. It is shown that the larger amount of sorbed cesium was extracted by KCI rather than with any other extractants. It is suggested that the fixation of cesium by vermiculite occurs at the crystal edge where Cs may replace K. Domestic vermiculite is a valuable material for use in the cesium sorption and fixation, and might be useful as a good packing material outside the tank of highly radioactive liquid waste. And from these results one could suggest that the artificial alteration of the biotite to vermiculite might be occurring by treating with NaCl.

  • PDF

Covalent organic polymer grafted on granular activated carbon surface to immobilize Prussian blue for Cs+ removal (유기고분자로 표면 개질 된 입상활성탄을 이용한 프러시안 블루 고정화 및 Cs+ 제거)

  • Seo, Younggyo;Oh, Daemin;Hwang, Yuhoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.5
    • /
    • pp.399-409
    • /
    • 2018
  • Prussian blue is known as a superior material for selective adsorption of radioactive cesium ions; however, the separation of Prussian blue from aqueous suspension, due to particle size of around several tens of nanometers, is a hurdle that must be overcome. Therefore, this study aims to develop granule type adsorbent material containing Prussian blue in order to selectively adsorb and remove radioactive cesium in water. The surface of granular activated carbon was grafted using a covalent organic polymer (COP-19) in order to enhance Prussian blue immobilization. To maximize the degree of immobilization and minimize subsequent detachment of Prussian blue, several immobilization pathways were evaluated. As a result, the highest cesium adsorption performance was achieved when Prussian blue was synthesized in-situ without solid-liquid separation step during synthesis. The sample obtained under optimal conditions was further analyzed by scanning electron microscope-energy dispersive spectrometry, and it was confirmed that Prussian blue, which is about 9.7% of the total weight, was fixed on the surface of the activated carbon; this level of fixing represented a two-fold improvement compared to before COP-19 modification. In addition, an elution test was carried out to evaluate the stability of Prussian blue. Leaching of Prussian blue and cesium decreased by 1/2 and 1/3, respectively, compared to those levels before modification, showing increased stability due to COP-19 grafting. The Prussian blue based adsorbent material developed in this study is expected to be useful as a decontamination material to mitigate the release of radioactive materials.

Physicochemical and Adsorptive Properties of Black Carbon for Radioactive Cesium under Various Combustion Conditions and Tree Species (연소 조건과 수종을 달리한 블랙카본의 물리화학적 성질 및 세슘의 흡착 특성)

  • Jeon, Sodam;Choung, Sungwook;Han, Weon Shik;Jang, Kyoung-Soon;Shin, Woosik;Hwang, Jeonghwan
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.689-695
    • /
    • 2017
  • This study was carried out to investigate the physicochemical and adsorptive characteristics of black carbon (BC) materials for cesium in case of severe nuclear accidents. The BC was prepared with a xylem of oak and pine trees incompletely combusted with different ramp rate and final temperature. Carbon (C), hydrogen (H) and oxygen (O) atomic ratios, BET, pore structure, and zeta potential were characterized for the produced BC. A low cesium concentration ($C_w{\approx}10^{-7}M$) was used for sorption batch experiments. The H/C and O/C ratios of BC decreased with the increase of final temperature, which indicates a carbonization of the wood materials regardless of ramp rate and tree species. However, SEM images showed different pore structures depending on tree species such as steric and plate-like for oak-BC and pine-BC, respectively. The greatest sorption distribution coefficients of $K_{d,Cs}{\approx}1,200{\sim}1,800L\;kg^{-1}$ were observed for the oak-BC produced at $400^{\circ}C$, while comparatively low $K_{d,Cs}$ < $100L\;kg^{-1}$ for pine-BC. In addition, the sorption capabilities of BC declined with the increase of combustion temperature up to $600^{\circ}C$, because high temperature destroyed surface functionalities with the rise of ash components in the BC. Therefore, the sorption processes of BC for radioactive cesium are predominantly controlled by final production temperature of BC as well as raw materials (e.g., tree species).