Browse > Article
http://dx.doi.org/10.15681/KSWE.2017.33.6.689

Physicochemical and Adsorptive Properties of Black Carbon for Radioactive Cesium under Various Combustion Conditions and Tree Species  

Jeon, Sodam (Division of Earth and Environmental Sciences, Korea Basic Science Institute)
Choung, Sungwook (Division of Earth and Environmental Sciences, Korea Basic Science Institute)
Han, Weon Shik (Department of Earth System Sciences, Yonsei University)
Jang, Kyoung-Soon (Biomedical Omics Group, Korea Basic Science Institute)
Shin, Woosik (Division of Earth and Environmental Sciences, Korea Basic Science Institute)
Hwang, Jeonghwan (Division of Earth and Environmental Sciences, Korea Basic Science Institute)
Publication Information
Abstract
This study was carried out to investigate the physicochemical and adsorptive characteristics of black carbon (BC) materials for cesium in case of severe nuclear accidents. The BC was prepared with a xylem of oak and pine trees incompletely combusted with different ramp rate and final temperature. Carbon (C), hydrogen (H) and oxygen (O) atomic ratios, BET, pore structure, and zeta potential were characterized for the produced BC. A low cesium concentration ($C_w{\approx}10^{-7}M$) was used for sorption batch experiments. The H/C and O/C ratios of BC decreased with the increase of final temperature, which indicates a carbonization of the wood materials regardless of ramp rate and tree species. However, SEM images showed different pore structures depending on tree species such as steric and plate-like for oak-BC and pine-BC, respectively. The greatest sorption distribution coefficients of $K_{d,Cs}{\approx}1,200{\sim}1,800L\;kg^{-1}$ were observed for the oak-BC produced at $400^{\circ}C$, while comparatively low $K_{d,Cs}$ < $100L\;kg^{-1}$ for pine-BC. In addition, the sorption capabilities of BC declined with the increase of combustion temperature up to $600^{\circ}C$, because high temperature destroyed surface functionalities with the rise of ash components in the BC. Therefore, the sorption processes of BC for radioactive cesium are predominantly controlled by final production temperature of BC as well as raw materials (e.g., tree species).
Keywords
Black carbon; Nuclear Accident; Radioactive cesium; Sorption;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Fang, Q., Chen, B., Lin, Y., and Guan, Y. (2013). Aromatic and Hydrophobic Surfaces of Wood-Derived Biochar Enhance Perchlorate Adsorption via Hydrogen Bonding to Oxygen-Containing Organic Groups, Environmental Science & Technology, 48(1), 279-288.   DOI
2 Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W. (2001). The "Terra Preta" Phenomenon: A model for Sustainable Agriculture in the Humid Tropics, Environmental Science & Technology, 88(1), 37-41.
3 Ho, Y. S. and McKay, G. (1999). Pseudo-Second Order Model for Sorption Processes, Process Biochemistry, 34(5), 451-465.   DOI
4 Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., and Sonoki, T. (2014). Physical and Chemical Characterization of Biochars Derived from Different Agricultural Residues, Biogeosciences, 11(23), 6613-6621.   DOI
5 Jo, T. S., Choi, J. W., and Lee, O. K. (2007). Physicochemical Changes of Woody Charcoals Prepared by Different Carbonizing Temperature, Journal of Korean Wood Science and Technology, 35(3), 53-60. [Korean Literature]
6 Korea Forest Service. (2016). Statistical Yearbook of Forestry 2016, 11-1400000-000001-10, Korea Forest Service, 34. [Korean Literature]
7 Lee, C. H. (2013). External Costs of Nuclear Energy in Korea, Korea Environment Institute, 2-3. [Korean Literature]
8 Lelieveld, J., Kunkel, D., and Lawrence, M. G. (2012). Global Risk of Radioactive Fallout after Major Nuclear Reactor Accidents, Atmospheric Chemistry and Physics, 12(9), 4245-4258.   DOI
9 Li, X., Shen, Q., Zhang, D., Mei, X., Ran, W., Xu, Y., and Yu, G. (2013). Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional $^{13}C$ NMR Correlation Spectroscopy, Public Library of Science ONE, 8(6), 65949.
10 Manabe, T., Ohata, M., Yoshizawa, S., Nakajima, D., Goto, S., Uchida, K., and Yajima, H. (2007). Effect of Carbonization Temperature on the Physicochemical Structure of Wood Charcoal, Transactions of the Materials Research Society of Japan, 32(4), 1035-1038.
11 Masiello, C. A. (2004). New Directions in Black Carbon Organic Geochemistry, Marine Chemistry, 92, 201-213.   DOI
12 Noshin, H., Somaieh, K., and Hossein, A. (2009). Equilibrium and Thermodynamic Studies of Cesium Adsorption on Natural Vermiculite and Optimization of Operation Conditions, Iranian Journal of Chemistry and Chemical Engineering, 28(4), 29-36.
13 Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S. M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X. Y. (2013). Recommendations for Reporting Black Carbon Measurements, Atmospheric Chemistry and Physics, 13(16), 8365-8379.   DOI
14 Plazinski, W., Dziuba, J., and Rudzinski, W. (2013). Modeling of Sorption Kinetics: The Pseudo-Second Order Equation and the Sorbate Intraparticle Diffusivity, Adsorption, 19(5), 1055-1064.   DOI
15 Spokas, K. A. (2010). Review of the Stability of Biochar in Soils: Predictability of O:C Molar Ratios, Carbon Management, 1(2), 289-303.   DOI
16 Pohl, K., Cantwell, M., Herckes, P., and Lohmann, R. (2014). Black Carbon Concentrations and Sources in the Marine Boundary Layer of the Tropical Atlantic Ocean using Four Methodologies, Atmospheric Chemistry and Physics, 14(14), 7431-7443.   DOI
17 Reyes, O., Kaal, J., Aran, D., Gago, R., Bernal, J., Garcia-Duro, J., and Basanta, M. (2015). The Effects of Ash and Black Carbon (Biochar) on Germination of Different Tree Species, Fire Ecology, 11(1), 119-133.   DOI
18 Rutherford, D. W., Wershaw, R. L., Rostad, C. E., and Kelly, C. N. (2012). Effect of Formation Conditions on Biochars: Compositional and Structural Properties of Cellulose, Lignin, and Pine Biochars, Biomass and Bioenergy, 46, 693-701.   DOI
19 Schmidt, M. W. I., Skjemstad, J. O., and Jager, C. (2002). Carbon Isotope Geochemistry and Nanomorphology of Soil Black Carbon: Black Chernozemic Soils in Central Europe Originate from Ancient Biomass Burning, Global Biogeochemical Cycles, 16(4), 1123.
20 Sing, K., Everett D., Haul, R., Moscou, L., Pierotti, R., Rouquerol, J., and Siemieniewska, T. (1985). IUPAC Commission on Colloid and Surface Chemistry including Catalysis. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984), Pure and Applied Chemistry, 57(4), 603-619.   DOI
21 Vanderheyden, S. R. H., Van Ammel, R., Sobiech-Matura, K., Vanreppelen, K., Schreurs, S., Schroeyers, W., Yperman, J., Carleer, R. (2016). Adsorption of Cesium on Different Types of Activated Carbon, Journal of Radioanalytical and Nuclear Chemistry, 310(1), 301-310.   DOI
22 Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P., Kopeikin, V. M., and Novigatsky, A. N. (2013). Black Carbon in the Arctic: The Underestimated Role of Gas Flaring and Residential Combustion Emissions, Atmospheric Chemistry and Physics, 13(17), 8833-8855.   DOI
23 Subhas, A. V., Rollins, N. E., Berelson, W. M., Dong, S., Erez, J., and Adkins, J. F. (2015). A Novel Determination of Calcite Dissolution Kinetics in Seawater, Geochimica et Cosmochimica Acta, 170, 51-68.   DOI
24 Uchimiya, M., Chang, S., and Klasson, K. T. (2011). Screening Biochars for Heavy Metal Retention in Soil: Role of Oxygen Functional Groups, Journal of Hazardous Materials, 190(1-3), 432-441.   DOI
25 Volchek, K., Miah, M. Y., Kuang, W., DeMaleki, Z., and Tezel, F. H. (2011). Adsorption of Cesium on Cement Mortar from Aqueous Solutions, Journal of Hazardous Materials, 194, 331-337.   DOI
26 Yeom, C. H., Lee, S. Y., Kwon, C. G., and Lee, H. P. (2012). The Study for Wildfire Risk Recognition of Facilities in Wildland Urban Interface of the Facility Administrator. Proceedings of the Korea Institute of Fire Science and Engineering Conference, Korean Institute of Fire Science & Engineering, 202-205. [Korean Literature]
27 Woo, S. H. (2013). Biochar for Soil Carbon Sequestration, Clean Technology, 19(3), 201-211. [Korean Literature]   DOI
28 Xiao, X., Chen, Z., and Chen, B. (2016). H/C Atomic Ratio as a Smart Linkage between Pyrolytic Temperatures, Aromatic Clusters and Sorption Properties of Biochars Derived from Diverse Precursory Materials, Scientific Reports, 6, 22644.   DOI
29 Yang, H. M., Jang, S. C., Hong, S. B., Lee, K. W., Roh, C., Huh, Y. S., and Seo, B. K. (2016). Prussian Blue-Functionalized Magnetic Nanoclusters for the Removal of Radioactive Cesium from Water, Journal of Alloys and Compounds, 657, 387-393.   DOI
30 Yasunari T, Stohl A, Hayano R, Burkhart J, and Eckhardt S. (2011). Cesium-137 Deposition and Contamination of Japanese Soils due to the Fukushima Nuclear Accident, Proceedings of the National Academy of Sciences, 108(49), 19530-19534.   DOI
31 Zawadzki, J. and Wisniewski, M. (2002). $^{13}C$ NMR Study of Cellulose Thermal Treatment, Journal of Analytical and Applied Pyrolysis, 62(1), 111-121.   DOI
32 Chang, S. E., Choung, S. W., Um, W. Y., and Chon, C. M. (2013). Effects of Weathering Processes on Radioactive Cesium Sorption with Mineral Characterization in Korean Nuclear Facility Site, Journal of the Mineralogical Society of Korea, 26(3), 209-218. [Korean Literature]   DOI
33 Bailey, A. W. and Anderson, M. L. (1980). Fire Temperatures in Grass, Shrub and Aspen Forest Communities of Central Alberta, Journal of Range Management, 33(1), 37-40.   DOI
34 Barrett, E. P., Joyner, L. G., and Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, 73(1), 373-380.   DOI
35 Brown, R. A., Kercher, A. K., Nguyen, T. H., Nagle, D. C., and Ball, W. P. (2006). Production and Characterization of Synthetic Wood Chars for Use as Surrogates for Natural Sorbents, Organic Geochemistry, 37(3), 321-333.   DOI
36 Brunauer, S., Emmett, P. H., and Teller, E. (1938). Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, 60(1), 309-319.   DOI
37 Cao, X., Pignatello, J., Li, Y., Lattao, C., Campbell, M. A., Chen, N., Nesley M. F., and Mao, J. (2012). Characterization of Wood Chars Produced at Different Temperatures Using Advanced Solid-State $^{13}C$ NMR Spectroscopic Techniques, Energy & Fuels, 26, 5983-5991.   DOI
38 Baldock, J. A. and Smernik, R. J. (2002). Chemical Composition and Bioavailability of Thermally Altered Pinus Resinosa (Red Pine) Wood, Organic Geochemistry, 33(9), 1093-1109.   DOI
39 Choi, B. I., Kim, J. C., and Woo, S. B. (2011). Results of Round Robin Test for Specific Surface Area, Analytical Science & Technology, 24(6), 503-509. [Korean Literature]   DOI
40 ClauBen, A. and Rosen, A. (2016). 5 Years Living with Fukushima, (Catherine Thomasson), IPPNW Germany and PSR USA, Germany, 16.