• Title/Summary/Keyword: Radioactive Waste Disposal Facility

Search Result 169, Processing Time 0.022 seconds

Licensing Review Scheme for Low and Intermediate Level Radioactive Waste Disposal Facility ($\cdot$저준위방사성폐기물처분시설 인허가심사 방안)

  • 전제근;정승영;장재권;이관희;박원재;박상훈
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.283-289
    • /
    • 2003
  • In order to establish the licensing review system for LILW disposal facility, we have studied the licensing review structure of oversea's countries, including United State, Japan, and France. We have also reviewed the domestic licensing review structure and the current status of development of safety standards for LILW management. A licensing review for LILW disposal facility can be implemented in 5-6 steps according to Atomic Energy Act. It is estimated to take 32 months for the CP and the OL review for LILW disposal facility referencing to the licensing review practice of the nuclear power plant. To date, a total of 15 MOST Notices have been developed to apply to the safe management of radwaste and 5 more MOST Notices will be developed by 2005.

  • PDF

Long-Term Experiments for Demonstrating Durability of a Concrete Barrier and Gas Generation in a Low-and Intermediate-Level Waste Disposal Facility

  • Kang, Myunggoo;Seo, Myunghwan;Kim, Soo-Gin;Kwon, Ki-Jung;Jung, Haeryong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.267-270
    • /
    • 2021
  • Long-term experiments have been conducted on two important safety issues: long-term durability of a concrete barrier with the steel reinforcements and gas generation from low-and intermediate-level wastes in an underground research tunnel of a radioactive waste disposal facility. The gas generation and microbial communities were monitored from waste packages (200 L and 320 L) containing simulated dry active wastes. In the concrete experiment, corrosion sensors were installed on the steel reinforcements which were embedded 10 cm below the surface of concrete in a concrete mock-up, and groundwater was fed into the mock-up at a pressure of 2.1 bars to accelerate groundwater infiltration. No clear evidence was observed with respect to corrosion initiation of the steel reinforcement for 4 years of operation. This is attributed to the high integrity and low hydraulic conductivity of the concrete. In the gas generation experiment, significant levels of gas generation were not measured for 4 years. These experiments are expected to be conducted for a period of more than 10 years.

Improvement of Safety Approach for Accidents During Operation of LILW Disposal Facility : Application for Operational Safety Assessment of the Near-surface LILW Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설의 운영 중 사고에 대한 평가체계 개선 : 한국의 중·저준위 방사성폐기물 표층처분시설의 운영 중 안전성평가 적용사례)

  • Kim, Hyun-Joo;Kim, Minseong;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • To evaluate radiological impact from the operation of a low- and intermediate-level radioactive waste disposal facility, a logical presentation and explanation of expected accidental scenarios is essential to the stakeholders of the disposal facility. The logical assessment platform and procedure, including analysis of the safety function of disposal components, operational hazard analysis, operational risk analysis, and preparedness of remedial measures for operational safety, are improved in this study. In the operational risk analysis, both design measures and management measures are suggested to make it possible to connect among design, operation, and safety assessment within the same assessment platform. For the preparedness of logical assessment procedure, classification logic of an operational accident is suggested based on the probability of occurrence and consequences of assessment results. The improved assessment platform and procedure are applied to an operational accident analysis of the Korean low- and intermediate-level radioactive waste disposal facility and partly presented in this paper.

Water Balance Evaluation of Final Closure Cover for Near- surface Radioactive Wastes Disposal Facility

  • Keunmoo Chang;Park, Joo-Wan;Yoon, Jeong-Hyoun;Park, Heui-Joo;Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.274-282
    • /
    • 2000
  • The simulation of water balance was conducted for suggested four alternative multi-layer cover design of near-surface radioactive waste disposal facility under domestic climate condition. The analysis was also conducted for the most favorable one out of four alternative cover design under conservative scenarios. Until 100 years after closure of disposal vault, the infiltration flux for the most favorable cover design was negligible even under doubling of the ambient precipitation condition. When the degradation of asphalt and geomembrane after 100 years of closure was considered, the infiltration flux significantly increased almost to the design criteria of cover system in I' Aube disposal facility. And it was found that the hydraulic conductivity of bentonite/sand as a bottom barrier should be no greater than 1$\times$10$^{-7}$ cm/sec recommended by U.S. EPA.

  • PDF

Conceptual Design for Repackaging of PWR Spent Nuclear Fuel (경수로 사용후핵연료 재포장 개념(안) 수립)

  • Sang-Hwan Lee;Chang-Min Shin;HyunGoo Kang;Chun-Hyung Cho;HaeRyong Jung
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.519-532
    • /
    • 2023
  • Spent nuclear fuel(SNF) is stored in nuclear power plants for a certain period of time and then transported to an interim storage facility. After that, SNF is finally repackaged in a disposal canister at an encapsulation plant for final disposal. Finland and Sweden, leading countries in SNF disposal technology, have already completed designing of spent fuel encapsulation plant. In particular, the encapsulation plant construction in Finland is near completion. When it comes to South Korea, as the amount of SNF production and disposal plan is different from those in Finland and Sweden, it is difficult to apply the concepts of these contries as is. Therefore, it is necessary to establish the spent fuel repackaging concept and to derive each operating and repackaging procedures by considering annual disposal plan of South Korea. The results of this study is expected to be used to establish the concept of optimized encapsulation plant through further research.

The Study for Reducing the Borrowing Cost for LILW Disposal (중·저준위방사성폐기물처분사업에서 금융비용 감소를 위한 연구)

  • Kim, Beomin;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • The repository for the disposal of LILW which is generated from nuclear power plants and industries is expected to be completed in 2014. For the disposal of LILW, it is important to secure a disposal facility itself, but it is also very important to establish a reasonable charging system which all shareholders are satisfied with. Korea's disposal fee for LILW is higher than other countries' fee, which is a burden to waste generators as well as the waste management organization. The partial reason for the high disposal fee is put on the high social and construction cost when compared with other countries. However the major reason is put on the excessive borrowing cost that is used for the construction of the LILW disposal facility. In this study, we proposed the way to reduce the excessive borrowing cost for sustainable project managements of LILW disposal by analyzing a cost structure.

Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동)

  • Ha, Jaechul;Lee, Jeong-Hwan;Jung, Haeryong;Kim, Juyub;Kim, Juyoul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The first Low- and Intermediate-Level Waste (LILW) disposal facility with 6 silos has been constructed in granite host rock saturated with groundwater in Korea. A two-dimensional numerical modeling on gas migration was carried out using TOUGH2 with EOS5 module in the disposal facility. Laboratory-scale experiments were also performed to measure the important properties of silo concrete related with gas migration. The gas entry pressure and relative gas permeability of the concrete was determined to be $0.97{\pm}0.15bar$ and $2.44{\times}10^{-17}m^2$, respectively. The results of the numerical modeling showed that hydrogen gas generated from radioactive wastes was dissolved in groundwater and migrated to biosphere as an aqueous phase. Only a small portion of hydrogen appeared as a gas phase after 1,000 years of gas generation. The results strongly suggested that hydrogen gas does not accumulate inside the disposal facility as a gas phase. Therefore, it is expected that there would be no harmful effects on the integrity of the silo concrete due to gas generation.

Review of Waste Acceptance Criteria in USA for Establishing Very Low Level Radioactive Waste Acceptance Criteria in the 3rd Step Landfill Disposal Site (국내 극저준위방폐물 처분시설 인수기준 마련을 위한 미국 처분시설의 인수기준 분석)

  • Park, Kihyun;Chung, Sewon;Lee, Unjang;Lee, Kyungho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.91-102
    • /
    • 2020
  • According to the Korea Radioactive Waste Agency's (KORAD's) medium and low level radioactive waste management implementation plan, the Domestic 3rd Step Landfill Disposal Facility has planned to accept a total of 104,000 drums (2 trenches) of very low level radioactive waste (VLLW), from the decommissioning site from April 2019 - February 2026 (total budget: 224.6 billion Won). Subsequently, 260,000 drums (5 trenches) will be disposed in a 34,076 ㎡. Accordingly, KORAD is preparing a waste acceptance criteria (WAC) for this facility. Every disposal facility for VLLW in other countries such as France and Spain, operate their WAC for each VLLW facility with a reasonable application approach, This, paper focuses on analyzing the WAC conditions in VLLW sites in the USA and discusses whether these can be met in domestic VLLW WAC. It also helps in the preparation of WAC for the 3rd Step Landfill Disposal Site in Gyeongju, since the USA has prior experience on decommissioning nuclear waste.

RADIATION SHIELDING EVALUATION OF IP-2 PACKAGES FOR LOW- AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE

  • Kim, Min-Chul;Choi, Jong-Rak;Chung, Sung-Hwan;Ko, Jae-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.511-516
    • /
    • 2008
  • Korea Hydro & Nuclear Power Co., Ltd. (KHNP) developed new IP-2 packages to transport low- and intermediate-level radioactive waste (LILW) steel drums from nuclear power plants to a disposal facility in accordance with IAEA and Korean transport regulations of radioactive material. Radiation shielding evaluation of the packages was carried out to demonstrate compliance with the regulatory requirements for IP-2 packages of radioactive material. Dose rate limits of LILW drums contained in the packages were determined.

WASTE MANAGEMENT IN DECOMMISSIONING PROJECTS AT KAERI

  • Hong Sang-Bum;Park Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.290-299
    • /
    • 2005
  • Two decommissioning projects are carried out at the KAERI (Korean Atomic Energy Research Institute), one for the Korea research reactors, KRR-1 and KRR-2, and another for the uranium conversion plant (UCP). The concept of the management of the wastes from the decommissioning sites was reviewed with a relation of the decommissioning strategies, technologies for the treatment and the decontamination, and the characteristics of waste. All the liquid waste generated from KRR-1 and KRR-2 decommissioning site is evaporated by a solar evaporation facility and all the liquid waste from the UCP is treated together with lagoon sludge waste. The solid wastes from the decommissioning sites are categorized into three groups; not contaminated, restricted releasable and radioactive waste. The not-contaminated waste will be reused and/or disposed at an industrial disposal site, and the releasable waste is stored for the future disposal at the KAERI. The radioactive waste is packed in containers, and will be stored at the decommissioning sites till they are sent to a national repository site. The reduction of the radioactive solid waste is one of the strategies for the decommissioning projects and could be achieved by the repeated decontamination. By the achievement of the minimization strategy, the amount of radioactive waste was reduced and the disposal cost will be reduced, but the cost for manpower, for direct materials and for administration was increased.

  • PDF