• Title/Summary/Keyword: Radioactive Contamination

Search Result 187, Processing Time 0.03 seconds

Radon concentration measurement at general house in Pusan area (부산지역 일반주택에서의 라돈농도측정)

  • Im, In-Cheol
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.29-33
    • /
    • 2004
  • Until early 1980s we have lived without thinking that radon ruins our health. But, scientists knew truth that radon radioactive danger is bedeviling on indoor that we live for a long time. Specially, interest about effect that get in danger and injury for Radon and human body is inactive in our country. Recently, with awareness for Radon contamination, We inform about importance and danger of Radon in some station of the Seoul subway, indoor air of school facilities and We had interest with measure and manages. Usually, Radon gas emitted in base of building enters into indoor through building floor split windage back among radon or indoor air of radon daughter nucleus contamination is increased. Therefore, indoor radon concentration rises as there are a lot of windages between number pipe of top and bottom and base that enter crack from estrangement of the done building floor, underground to indoor. Thus, Radon enters into indoor through architecture resources water as well as, kitchen natural gas for choice etc., but more than about 85% from earth's crust emit. Danger and injury of health by Radon and Radon daughter nucleus that is indicated for cause of lung cancer incerases content of uranium of soil rises specially from inside pit of High area and a mine, cave, hermetical space with house. Safe sub-officer of radon concentration can not know and danger always exists large or small during. So, Important thing reduces danger of lung cancer by lowering concentration of Radon within house and building. Therefore, is thought that need general house Radon concentration measurement, measured Radon concentration monthly using Sintillator radon monitor. Study finding appeared high all underground market 1 year than the ground, and the winter appeared high than the summer. Specially, month that pass over 4pCi in house that United States Environmental Protection Agency advises appeared in underground, and appeared and know Radon exposure gravity by 4 months during 12 months. Therefore, Thinking that establishment and regulation of norm and preparation of reduction countermeasure about Radon are pressing feels, and inform result that measure Radon concentration.

  • PDF

Effectiveness Evalution of 18F-FDG Auto Dispenser (RIID: Radiopharmaceutical Intelligent Dispenser) (18F-FDG 자동분주기 사용에 따른 유용성 평가)

  • Yoo, Moon-Gon;Moon, Jae-Seung;Kim, Su-Geun;Shin, Min-Yong;Kim, Seung-Chul;Lee, Tea-hun;An, Sung-Hyeun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.79-83
    • /
    • 2018
  • Purpose $^{18}F-FDG$, which is commonly used in PET-CT examinations, is low in capacity and it is difficult to keep the amount of radioactivity busy when the specific activity is high, increasing the amount of space dose and radioactive contamination in the distribution room. Therefore, while evaluating the actual dose administered to patients during the manual dispense process, the medical institution intends to assess the usefulness of the auto dispenser by comparing the differences from the actual dose administered to the patient using the new automatic dispense. Materials and Methods From July 2016 to December 2016, 846 patients were manually administered by workers using $^{18}F-FDG$ and $^{18}F-FDG$ 906 patients were using auto dispenser from July 2017 to December 2017. Results Capacity administered to patients during the manual dispense averaged $35.41{\pm}27.79%$ compared to the recommended dose, and the auto dispenser process showed a small difference of $-2.15{\pm}3.99%$ compared to the recommended dose(p<0.05). Conclusion Working people did not have to touch radioactive medicines directly while they were busy in the auto dispenser, and because of the availability of other tasks far away, the time and distance to receive the exposure were also advantageous. It is believed that future use by many medical institutions will not only reduce the dose to patients but also help reduce the exposure dose to workers.

Pre-treatment of the White-Spotted Flower Chafer (Protaetia brevitarsis) as an Ingredient for Novel Foods (흰점박이꽃무지(Protaetia brevitarsis)의 식품원료화를 위한 전처리 조건 확립)

  • Kwon, Eun-Young;Yoo, Jeongmi;Yoon, Young-Il;Hwang, Jae-Sam;Goo, Tae-Won;Kim, Mi-Ae;Choi, Young-Cheol;Yun, Eun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.397-402
    • /
    • 2013
  • The pharmacological efficacy of Protaetia (P.) brevitarsis larvae has been described in the Dongui Bogam. It is believed that the larvae are particularly useful for hepatic disorders. However, natural aversion has made it difficult to consume these larvae as food. Thus, we sought to make an eatable form of the larvae by establishing optimal conditions for larvae preparation. Larvae were selectively bred, sterilized, and a powder of larvae generated by freeze-drying. Afterward, the CellTiter $96^{(R)}$ AQueous Non-Radioactive Cell Proliferation Assay (MTS) with the RAW 264.7 cell line was used to validate the safety of the powder as a food ingredient. We determined that oak sawdust sterilized by water vapor for 5 minutes could be used for larvae feed, and a feeding for 3~5 days followed by a fasting for 3 days were optimal conditions for larvae preparation. In addition, sterilization of larvae at $115^{\circ}C$ and $0.9kgf/cm^3$ (to avoid contamination of pathogenic bacteria and fungi) was successfully applied in the production of edible powder from P. brevitarsis. The optimized processes established in our experiments can be used in the industrial production of P. brevitarsis as a food ingredient.

The Cesium Removal Using a Polysulfone Carrier Containing Nitric Acid-treated Bamboo Charcoal (질산으로 표면처리한 대나무 활성탄을 첨가한 폴리술폰 담체의 세슘제거 효율 규명)

  • Rahayu, Ni Wayan Sukma Taraning;Kim, Seonhee;Tak, Hyunji;Kim, Kyeongtae;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • The cesium (Cs) sorption characteristics of a bead-type polysulfone carrier contained HNO3-treated bamboo charcoal (3 - 5 mm in diameter) in water system were investigated and its Cs removal efficiency as an adsorbent from water was also identified by various laboratory experiments. From the results of batch sorption experiments, the bead-type polysulfone carrier with only 5% HNO3-treated bamboo charcoal (P-5NBC) represented the high Cs removal efficiency of 57.8% for 1 hour sorption time. The Cs removal efficiency of P-5NBC in water after 24 hours reaction maintained > 69% at a wide range of pH and temperature conditions, attesting to its applicability under various water systems. Batch sorption experiments were repeated for P-5NBC coated with two cultivated microorganisms (Pseudomonas fluorescens and Bacillus drentensis), which were typical indigenous species inhabited in soil and groundwater. The Cs removal efficiency for two microorganisms coated polysulfone carrier (BP-5NBC) additionally increased by 19% and 18%, respectively, compared to that of only P-5NBC without microorganisms coated. The average Cs desorption rate of P-5NBC for 24 h was lower than 16%, showing the Cs was stably attached on HNO3-treated bamboo charcoal in so much as its long-term use. The maximum Cs sorption capacity (qm) of P-5NBC calculated from the Langmuir isotherm model study was 60.9 mg/g, which was much higher than those of other adsorbents from previous studies for 1 h sorption time. The results of continuous column experiments showed that the P-5NBC coated with microorganisms packed in the column maintained > 80% of the Cs removal efficiency during 100 pore volumes flushing. It suggested that only 14.7 g of P-5NBC (only 0.75 g of HNO3 treated bamboo charcoal included) can successfully clean-up 7.2 L of Cs contaminated water (the initial Cs concentration: 1 mg/L; the effluent concentration: < 0.2 mg/L). The present results suggested that the Cs contaminated water can be successfully cleaned up by using a small amount of the polysulfone carrier with HNO3-treated bamboo charcoal.

Sorption Efficiency of the Bamboo Charcoal to Remove the Cesium in the Contaminated Water System (오염수계 내 세슘 제거를 위한 대나무 활성탄의 흡착효율 규명)

  • Ahn, Joungpil;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.87-97
    • /
    • 2018
  • The cesium (Cs) removal from the contaminated water system has been considered to be difficult because the cesium likes to exist as soluble phases such as ion and complexes than the solid in water system. Many researches have focused on developing the breakthrough adsorbent to increase the cesium removal efficiency in water. In this study, the laboratory scale experiments were performed to investigate the feasibility of the adsorption process using the bamboo charcoal for the Cs contaminated water system. The Cs removal efficiency of the bamboo charcoal were measured and the optimal adsorption conditions were determined by the adsorption batch experiments. Total 5 types of commercialized bamboo charcoals in Korea were used to identify their surface properties from SEM-EDS and XRD analyses and 3 types of bamboo charcoals having large specific surface areas were used for the adsorption batch experiment. The batch experiments to calculate the Cs removal efficiency were performed at conditions of various Cs concentration (0.01 - 10 mg/L), pH (3 - 11), temperature ($5-30^{\circ}C$), and adsorption time (10 - 120 min.). Experimental results were fitted to the Langmuir adsorption isotherm curve and their adsorption constants were determined to understand the adsorption properties of bamboo charcoal for Cs contaminated water system. From results of SEM-EDS analyses, the surfaces of bamboo charcoal particles were composed of typical fiber structures having various pores and dense lamella structures in supporting major adsorption spaces for Cs. From results of adsorption batch experiments, the Cs-133 removal efficiency of C type bamboo charcoal was the highest among those of 3 bamboo charcoal types and it was higher than 75 % (maximum of 82 %) even when the initial Cs concentration in water was lower than 1.0 mg/L, suggesting that the adsorption process using the bamboo charcoal has a great potential to remove Cs from the genuine Cs contaminated water, of which Cs concentration is low (< 1.0 mg/L) in general. The high Cs removal efficiency of bamboo charcoal was maintained in a relatively wide range of temperatures and pHs, supporting that the usage of the bamboo charcoal is feasible for various types of water. Experimental results were similar to the Langmuir adsorption model and the maximum amount of Cs adsorption (qm:mg/g) was 63.4 mg/g, which was higher than those of commercialized adsorbents used in previous studies. The surface coverage (${\theta}$) of bamboo charcoal was also maintained in low when the Cs concentration in water was < 1.0 mg/L, investigating that the Cs contaminated water can be remediated up with a small amount of bamboo charcoal.

Electrochemical Decontamination of Metallic Wastes Contaminated with Uranium Compounds (우라늄화합물로 오염된 금속폐기물의 전해제염)

  • 양영미;최왕규;오원진;유승곤
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.11-23
    • /
    • 2003
  • A study on the electrolytic dissolution of SUS-304 and Inconel-600 specimen was carried out in neutral salt electrolyte to evaluate the applicability of electrochemical decontamination process for recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds generated by dismantling a retired uranium conversion plant in Korea. Although the best electrolytic dissolution performance for the specimens was observed in a Na2s04 electrolyte, a NaNO$_3$ neutral salt electrolyte, in which about 30% for SUS-304 and the same for Inconel-600 in the weight loss was shown in comparison with that in a Na$_2$SO$_4$ solution, was selected as an electrolyte for the electrochemical decontamination of metallic wastes with the consideration on the surface of system components contacted with nitric acid and the compatibility with lagoon wastes generated during the facility operation. The effects of current density, electrolytic dissolution time, and concentration of NaNO$_3$ on the electrolytic dissolution of the specimens were investigated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as UO$_2$, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion facility were performed in 1M NaNO$_3$ solution with the current density or In mA/$\textrm{cm}^2$. it was verified that the electrochemical decontamination of the metallic wastes contaminated uranium compounds was quite successful in a NaNO$_3$ neutral salt electrolyte by reducing $\alpha$ and $\beta$ radioactivities below the level of self disposal within 10 minutes regardless of the type of contaminants and the degree of contamination.

  • PDF

The Uptake of $Sr^{90}$ by Paddy Rice from Soil and its Distribution in the Plant (답토양(畓土壤)에서 수도(水稻)의 Strontium-90 흡수(吸收)와 수도체내(水稻體內) 분포(分布))

  • Lim, Soo-Kil;Kim, Jae-Sung;Lee, Young-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.1
    • /
    • pp.48-54
    • /
    • 1986
  • Because of the drastic development of nuclear industries, the contamination of natural environments by the disposal of radioactive materials which are released from nuclear facilities have aroused a considerable concern in relation to agricultural practices. Therefore the present investigation, through pot experiment, was performed to find out the aspect of the uptake of $Sr^{90}$ by rice plants and its distribution in them in five different types(physicochemical and minerallogical properties) of paddy soils. The results obtained were as follows; 1) Visual toxic symptoms on the growth of rice plant due to treatment of $Sr^{90}$ up to $40{\mu}Ci/10㎏$ in a pot were not observed even though uptake of $Sr^{90}$ by rice plant was proportionally increased with the $Sr^{90}$ treatment. 2) Distribution of $Sr^{90}$ in the rice plant was the highest in the leaves (84.5%) followed in the order by stems (13.5%) and rough grain (2.0%). The ratio of $Sr^{90}$ to Ca was higher in the leaves (872) and stems (667) than in the rice grain (89). 3) $Sr^{90}$ absorption in the rice plant ranged $0.15{\sim}0.30%$ at harvesting time. Uptake of $Sr^{90}$ by rice plants decreased by the increase of soil pH and exchangeable canons in the soils, but $Sr^{90}$ uptake increased when nitrogen, organic matter and clay content in soil was high, and uptake of this nuclide in the rice plant was higher with low Illite and Vermiculite content in the soils.

  • PDF