• Title/Summary/Keyword: Radio frequency communication

Search Result 1,095, Processing Time 0.025 seconds

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

A Study on Security Level-based Authentication for Supporting Multiple Objects in RFID Systems (다중 객체 지원을 위한 RFID 시스템에서 보안 레벨 기반의 인증 기법에 관한 연구)

  • Kim, Ji-Yeon;Jung, Jong-Jin;Jo, Geun-Sik;Lee, Kyoon-Ha
    • The Journal of Society for e-Business Studies
    • /
    • v.13 no.1
    • /
    • pp.21-32
    • /
    • 2008
  • RFID systems provide technologies of automatic object identification through wireless communications in invisible ranges and adaptability against various circumstances. These advantages make RFID systems to be applied in various fields of industries and individual life. However, it is difficult to use tags with distinction as tags are increasingly used in life because a tag usually stores only one object identifier in common RFID applications. In addition, RFID systems often make serious violation of privacy caused by various attacks because of their weakness of radio frequency communication. Therefore, information sharing methods among applications are necessary for expansive development of RFID systems. In this paper, we propose efficient RFID scheme. At first, we design a new RFID tag structure which supports many object identifiers of different applications in a tag and allows those applications to access them simultaneously. Secondly, we propose an authentication protocol to support the proposed tag structure. The proposed protocol is designed by considering of robustness against various attacks in low cost RFID systems. Especially, the proposed protocol is focused on efficiency of authentication procedure by considering security levels of applications. In the proposed protocol, each application goes through one of different authentication procedures according to their security levels. Finally, we prove efficiency of th proposed scheme compared with the other schemes through experiments and evaluation.

  • PDF

Design of a Highly Linear Broadband Active Antenna Using a Multi-Stage Amplifier (다중 증폭 회로를 이용한 높은 선형 특성을 갖는 광대역 능동 안테나 설계)

  • Lee, Cheol-Soo;Jung, Geoun-Seok;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1193-1203
    • /
    • 2008
  • An active antenna(AA) can have wider bandwidth and more gain with small antenna size than those of passive antennas. However, AA inherently generates thermal noise and spurious signals from an active device. Moreover, the spurious performance of AA is very important in a highly sensitive receiving system since it is located at the front end of the receiving system. In this study, we developed an AA with $100{\sim}500\;MHz$, having the output P1dB higher than 3 dBm and little spurious signals in real environments. To achieve such performance, we designed an AA with 3-stage amplifier using CD(common drain) FET and 2 BJTs. Its electrical performances were simulated using ADS. The measurement results for typical gain, NF, OIP3, VSWR and P1dB in the required frequency band were 9.7 dBi, 10 dB, 14 dBm, 1.7:1 and 3 dBm respectively. They are in good agreement with simulation results. The unwanted spectrum level of the proposed AA is $10{\sim}30\;dB$ lower than that of the antenna with CS(common source) FET configuration at a west suburban area of Seoul, which shows that the proposed AA can be applicable to a highly sensitive receiving system for detecting unknown weak signals mixed with broadcasting and civilian communication signals.

60 GHz Band Non-Radiative Dielectric Waveguide Mixer having the Waveguide Directional Coupler (도파관 방향성 결합기를 갖는 60 GHz 대역 Non-Radiative Dielectric 도파관 혼합기)

  • Yoo, Young-Geun;Choi, Jae-Ha
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.397-403
    • /
    • 2008
  • In this paper, the mixer was implemented in the non-radiative dielectric waveguide that is the main component of 60 GHz band radio telecommunications equipment which a demand increases for the purpose of point-to-point communication network. As to the manufacture of the non-radiative dielectric waveguide mixer, it was the implementation of the dielectric line combiner to be most difficult. The thing which that gives shape to the curvature which is the dielectric line determined and the to place in the exact interval thing are easy. For this reason, it was very difficult to make in order to have the regular performance in the case of the mixer having the dielectric line combiner. In this paper, since the dielectric line combiner was replaced with the waveguide directional coupler and the manufacture was possible through a processing it had the characteristic that a combiner is fixed. In result, the productivity of a mixer was innovatively improved. The design frequency of the mixer implemented through this paper RF and LO are $51{\sim}64\;GHz$. IF Is $DC{\sim}\;GHz2$. The down conversion loss toward the RF input of $60{\sim}62\;GHz$ was measured by $10{\pm}1\;dB$ in the condition that LO is 10 dBm, 60 GHz.

ZnO Film Deposition on Aluminum Bottom Electrode for FBAR Filter Applications and Effects of Deposition Temperature on ZnO Crystal Growth (FBAR 필터 응용을 위한 Al 하부전극 상에서 ZnO 박막 증착 및 온도가 ZnO 결정의 성장에 미치는 영향)

  • ;;;Mai Linh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.255-262
    • /
    • 2003
  • In this paper, an investigation on the ZnO film deposition using radio-frequency magnetic sputtering techniques on aluminum bottom electrode for film bulk acoustic wave resonator (FBAR) filter applications and the temperature effects on the ZnO film growth is presented. The investigation on how much impact the actual process temperature may have on the crystal growth is more meaningful if it is considered that the piezoelectricity property of ZnO films plays a dominant role in determining the resonance characteristics of FBAR devices and the piezoelectricity is determined by the degree of the c-axis preferred orientation of the deposited ZnO films. In this experiment, it was found that the growth of ZnO crystals has a strong dependence on the deposition temperature ranged from room temperature to $350^{\circ}C$ regardless of the RF powers applied and there exist 3 temperature regions divided by 2 critical temperatures according to the degree of the c-axis preferred orientation. Overall, below $200^{\circ}C$, ZnO deposition results in columnar grains with a highly preferred c-axis orientation. With this ZnO film, a multilayered FBAR structure could be realized successfully.

A Study on Properties of N-type ZnS Deposited at Various RF Power for Solar Cell Applications (RF Power에 따른 태양전지용 N-type ZnS 특성연구)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Jeong, Woon-Jo;Lee, Suk-Ho;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hea-Duck
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.574-577
    • /
    • 2011
  • In this study, we use the $2.5cm{\times}7.5cm$ soda lime glass as the substrate. We used the ultrasonicator. Glass was dipped in the acetone, methanol and DI water respectively for 10 minutes. Ar(99.99%)gas was used as the sputtering gas. We varied the RF power between 100~175 W with 25 W steps. Base pressure was kept by turbo molecular pump at $3.0{\times}10^{-6}$ torr. Working pressure was kept by injection of Ar gas. ZnS thin films were deposited with the radio frequency magnetron sputtering technique at various temperatures and sputtering powers. It is also clearly observed that, the intensity of the (111) XRD peak increases with increasing the RF power. Electrical properties were measured by hall effect methods at room temperature. The resistivity, carrier concentration, and hall mobility of ZnS deposited on glass substrate as a function of sputtering power. It can be seen that as the sputtering power increase from 100 to 175 W, the resistivity of the films on glass decreased significantly from $8.1{\times}10^{-2}$ to $1.2{\times}10^{-3}\;{\Omega}{\cdot}cm$. This behavior could be explained by the effect of the sputtering power on the mobility and carrier concentration. When the RF power increases, the carrier concentration increases slightly while the resistivity decreases significantly. These variation originate from improved crystallinity and enhanced substitutional doping as the sputtering power increases.

Use of Unmanned Aerial Vehicle for Multi-temporal Monitoring of Soybean Vegetation Fraction

  • Yun, Hee Sup;Park, Soo Hyun;Kim, Hak-Jin;Lee, Wonsuk Daniel;Lee, Kyung Do;Hong, Suk Young;Jung, Gun Ho
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.126-137
    • /
    • 2016
  • Purpose: The overall objective of this study was to evaluate the vegetation fraction of soybeans, grown under different cropping conditions using an unmanned aerial vehicle (UAV) equipped with a red, green, and blue (RGB) camera. Methods: Test plots were prepared based on different cropping treatments, i.e., soybean single-cropping, with and without herbicide application and soybean and barley-cover cropping, with and without herbicide application. The UAV flights were manually controlled using a remote flight controller on the ground, with 2.4 GHz radio frequency communication. For image pre-processing, the acquired images were pre-treated and georeferenced using a fisheye distortion removal function, and ground control points were collected using Google Maps. Tarpaulin panels of different colors were used to calibrate the multi-temporal images by converting the RGB digital number values into the RGB reflectance spectrum, utilizing a linear regression method. Excess Green (ExG) vegetation indices for each of the test plots were compared with the M-statistic method in order to quantitatively evaluate the greenness of soybean fields under different cropping systems. Results: The reflectance calibration methods used in the study showed high coefficients of determination, ranging from 0.8 to 0.9, indicating the feasibility of a linear regression fitting method for monitoring multi-temporal RGB images of soybean fields. As expected, the ExG vegetation indices changed according to different soybean growth stages, showing clear differences among the test plots with different cropping treatments in the early season of < 60 days after sowing (DAS). With the M-statistic method, the test plots under different treatments could be discriminated in the early seasons of <41 DAS, showing a value of M > 1. Conclusion: Therefore, multi-temporal images obtained with an UAV and a RGB camera could be applied for quantifying overall vegetation fractions and crop growth status, and this information could contribute to determine proper treatments for the vegetation fraction.

Energy-Efficient Routing Protocol based on Interference Awareness for Transmission of Delay-Sensitive Data in Multi-Hop RF Energy Harvesting Networks (다중 홉 RF 에너지 하베스팅 네트워크에서 지연에 민감한 데이터 전송을 위한 간섭 인지 기반 에너지 효율적인 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.611-625
    • /
    • 2018
  • With innovative advances in wireless communication technology, many researches for extending network lifetime in maximum by using energy harvesting have been actively performed on the area of network resource optimization, QoS-guaranteed transmission, energy-intelligent routing and etc. As known well, it is very hard to guarantee end-to-end network delay due to uncertainty of the amount of harvested energy in multi-hop RF(radio frequency) energy harvesting wireless networks. To minimize end-to-end delay in multi-hop RF energy harvesting networks, this paper proposes an energy efficient routing metric based on interference aware and protocol which takes account of various delays caused by co-channel interference, energy harvesting time and queuing in a relay node. The proposed method maximizes end-to-end throughput by performing avoidance of packet congestion causing load unbalance, reduction of waiting time due to exhaustion of energy and restraint of delay time from co-channel interference. Finally simulation results using ns-3 simulator show that the proposed method outperforms existing methods in respect of throughput, end-to-end delay and energy consumption.

Design and Implementation of 5G mmWave LTE-TDD HD Video Streaming System for USRP RIO SDR (USRP RIO SDR을 이용한 5G 밀리미터파 LTE-TDD HD 비디오 스트리밍 시스템 설계 및 구현)

  • Gwag, Gyoung-Hun;Shin, Bong-Deug;Park, Dong-Wook;Eo, Yun-Seong;Oh, Hyuk-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.445-453
    • /
    • 2016
  • This paper presents the implementation and design of the 1T-1R wireless HD video streaming systems over 28 GHz mmWave frequency using 3GPP LTE-TDD standard on NI USRP RIO SDR platform. The baseband of the system uses USRP RIO that are stored in Xilinx Kintex-7 chip to implement LTE-TDD transceiver modem, the signal that are transceived from USRP RIO up or down converts to 28 GHz by using self-designed 28 GHz RF transceiver modules and it is finally communicated HD video data through self-designed $4{\times}8$ sub array antennas. It is that communication method between USRP RIO and Host PC use PCI express ${\times}4$ to minimize delay of data to transmit and receive. The implemented system show high error vector magnitude performance above 25.85 dBc and to transceive HD video in experiment environment anywhere.

Study on the Business Process Modeling scheme using the Context Analysis methodology (상황 분석 방법론을 적용한 효율적 비즈니스 프로세스 모델링 방안에 관한 연구)

  • You, Chi-Hyung;Sang, Sung-Kyung;Kim, Jung-Jae;Na, Won-Shik
    • Journal of Digital Contents Society
    • /
    • v.9 no.4
    • /
    • pp.661-667
    • /
    • 2008
  • The dynamics of business cycles has been changed by the macroscopic economic forces because of the introduction of new technical know-how each year. These the dynamics of business has a significant influence on the investment of enterprise in the information communication field. Today, the most important goal of the IT investment is simply not to lower the production cost any more, but to improve the usefulness for the customers and partners in order to obtain the optimized mass products. Therefore, the enterprises have been concentrating their all abilities on the automation, integration, and optimization of business process using BPM. In addition, they are concentrating their efforts on the business expansion by approaching the technical aspect using RFID application system. However, in order to accomplish a successful enterprise ability, the technical view, business process view, and organization view must be considered together. We suggested the method considering organization view, via the technical element, i.e., RFID system for approaching the business process. Furthermore, we tried the optimization of assignment using Context Analysis methodology and proposed the method to reduce the element with respect to the time, human, and expense by applying the Case Study method that minimizes the iteration times through the transmitted processing procedure and type. The proposed method gave us the expectation that it will bring out the innovative improvement with respect to the time, expense, quality, and customer's satisfaction in the process from the analysis of business process to the analysis and design of system.

  • PDF