• Title/Summary/Keyword: Radio Wave Industry

Search Result 24, Processing Time 0.03 seconds

Broad-Band Design of Ferrite One-body EM Wave Absorbers for an Anechoic Chamber

  • Kim, Dong-Il;Son, June-Young;Park, Woo-Keun;Park, Dong-Han
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.51-55
    • /
    • 2004
  • With the progress of the electronics industry and radio communication technology, certain problems, such as electromagnetic interference(EMI), have arisen due to the increased use of electromagnetic(EM) waves. International organizations such as CISPR, FCC, and ANSI have provided the standards for the EM wave environment and for the countermeasure of the electromagnetic compatibility(EMC). EM wave absorbers are used for constructing an anechoic chamber to test and measure EMI and electromagnetic susceptibility(EMS). In this paper, we have designed an one-body EM(electromagnetic) wave ferrite absorber, based on the equivalent material constants method for both normally and obliquely incident waves, whose absorption abilities are superior to that of the conventional ones. The fabricated absorber has a thickness of 27.68 mm and shows an absorption ability over 20 ㏈ in the frequency from 30 MHz to 6 ㎓.

A Study on Broadband Design of EM Wave Absorber for Anechoic Chamber

  • Kim, Dong-Il;Son, June-Young;Weon, Young-Su;Ku, Dong-Woo;Kim, Ki-Man;Song, Jae-Man;Yea, Byeong-Deok
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.16-21
    • /
    • 2002
  • On the contrary to the progress of the electronic industry and radio communication technologies, many social problems such as EMI, due to unnecessary electromagnetic(EM) wave are serious with the increased use of EM wave. It is required that the absorbing capability of an EM wave absorber is more than 20 dB, the bandwidth of which is required from 30 MHz to 18 GHz to satisfy the international standard about an anechoic chamber for EMI/EMS measurement$^{[1]}$TEX>. However, the absorbing frequency band of the conventional EM wave absorbers satisfying more than 20 dB is very narrow, for examples, from 30 MHz to 400 MHz in ferrite tile type and from 30 MHz to 870 MHz in ferrite grid type, respectively. In this paper, we proposed and designed a new tripe absorber with broadband characteristics covering the frequency band from 30 MHz to 10 GHz by use of the equivalent material constants method (EMCM)$^{[2]~[4]}$TEX>.

A Study on Radio Wave Resource Management and Industrial Technology Revitalization in The Medical and Energy Fields (의료 및 에너지 분야 전파 자원 관리 및 산업 기술 활성화 방안에 대한 연구)

  • Yoon, Sang-Ok;Seok, Gyeong-Hyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.543-554
    • /
    • 2022
  • In this study, the government's investment, laws, regulations, and difficulties related to IoT radio technology in the energy and medical fields are mainly analyzed. Also, plans for dissemination, technology preemption, and commercialization are derived to enhance global competitiveness. Research on ways to secure and predict radio wave application technologies in energy and medical fields, and to alleviate barriers to entry for new business operators. Analyzes the efficiency of support measures using expert groups in each energy and medical field, analyzes the utilization value of accumulated data, and proposes mid- to long-term promotion systems and support measures, as well as utilization measures of data held by external agencies related to radio waves.

A Study on Construction of Platform Using Spectrum Big Data (전파 빅데이터 활용을 위한 플랫폼 구축방안 연구)

  • Kim, Hyoung Ju;Ra, Jong Hei;Jeon, Woong Ryul;Kim, Pankoo
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.99-109
    • /
    • 2020
  • This paper proposes a platform construction plan for the use of spectrum big data, collects and analyzes the big data in the radio wave field, establishes a linkage plan, and presents a support system scheme for linking and using the spectrum and public sector big data. It presented a plan to build a big data platform in connection with the spectrum public sector. In a situation where there is a lack of a support system for systematic analysis and utilization of big data in the field of radio waves, by establishing a platform construction plan for the use of big data by radio-related industries, the preemptive response to realize the 4th Industrial Revolution and the status and state of the domestic radio field. The company intends to contribute to enhancing the convenience of users of the big data platform in the public sector by securing the innovation growth engine of the company and contributing to the fair competition of the radio wave industry and the improvement of service quality. In addition, it intends to contribute to raising the social awareness of the value of spectrum management data utilization and establishing a collaboration system that uses spectrum big data through joint use of the platform.

Optimization of Pose Estimation Model based on Genetic Algorithms for Anomaly Detection in Unmanned Stores (무인점포 이상행동 인식을 위한 유전 알고리즘 기반 자세 추정 모델 최적화)

  • Sang-Hyeop Lee;Jang-Sik Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.113-119
    • /
    • 2023
  • In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.

Comparison of Radio Wave Propagation Models for Mobile Networks

  • Altayeva, Aigerim Bakatkaliyevna;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.192-199
    • /
    • 2015
  • Heterogeneous cellular networks are gaining momentum in industry and the research community, and are attracting the attention of standard bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are to increase the capacity and coverage of cellular networks. In this article, we provide an overview of expansion strategies, optimal locations of base stations with different characteristics, and radio-planning models.

Optimum Cell Design using MLP Model and Wave Propagation Characteristic Parameters for Wireless LAN in Indoor Radio Environments (실내 환경에서 다층 퍼셉트론 모델과 전파 전파 특성파라미터를 이용한 무선 근거리통신망의 최적 셀 설계)

  • 김광윤;문용규
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.5
    • /
    • pp.547-556
    • /
    • 2002
  • This paper was proposed a wave path loss prediction algorithm using multilayer perceptron (MLP) model and wave propagation characteristic parameters for Wireless LAN in indoor radio environments. Receiving power was predicted by calculating indoor path loss in a Wireless LAN that has transmission power of 100mW and frequency of 2.4GHz, and was compared with measured. In the result of measurement shows that there is a difference between predicted and measured receiving power which can be reduced by an accurate analysis of the various path loss factors. In order to fix the access point(AP) positions was used the proposed a wave path loss prediction algorithm, and designed the optimum cell for Wireless LAN.

  • PDF

An Empirical Study on Improving the Spectrum Usage Fee System (전파사용료 제도의 합리적 개선방안에 관한 연구)

  • Lee, Kun-Chang;Lee, Seung-Jin
    • Korean Management Science Review
    • /
    • v.23 no.3
    • /
    • pp.225-242
    • /
    • 2006
  • The Spectrum Usage Fee System which has been introduced and enforced since 1993 has had a great role for effective use of the radio frequency resources and the promotion of radio wave industry. However, the current system has been criticized due to several drawbacks. For example, broadcasting stations and national institutions are exempted whereas the overdue utility rate on some frequency has been imposed. So there has been rising the questions on whether the principles of fair imposition are broken. Another problem regarding the current system is that how to calculate the fee is too much complicated, and it needs to be revised into a simpler and clearer formulation. In this regard, this study intends to propose a new calculation framework for the radio spectrum usage fee and then prove its validity empirically on the basis of real data gathered from MIC and focus group interview.

Channel Modeling and RF Performance Verification in mmWave Bands Based on NS-3 (NS-3 기반의 mmWave 대역 채널 모델링 및 RF 성능 검증)

  • Seung-Min Lee;Jun-Seok Seo;Hong-Je Jang;Myung-Ryul Choi
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.650-656
    • /
    • 2023
  • This paper implements a channel model for mmWave bands using an NS-3-based 5G system-level simulator and analyzes the reliability and validity of the implemented model through RF performance verification. The channel model for RF performance verification in the mmWave bands consider parameters such as characteristics defined in 3GPP TR 38.901, beam-forming, antenna configuration, scenarios, among others. Furthermore, the simulation results verify compliance within the ranges permitted by the 3GPP standards and verify reliability in indoor environmental scenarios by exploiting the Radio Environment Map (REM). Therefore, the channel model implemented in this study is applicable to the actual design and establishment of 5G networks, presenting a method to evaluate and validate RF performance by adjusting various parameters.

Commercial and In-house Simulator Development Trend for Electromagnetic Analysis of Autonomous Driving Environments (자율주행 환경의 전자기 해석을 위한 상용 및 자체 시뮬레이터 개발 동향)

  • Park, Woobin;Kim, Moonseong;Lee, Woochan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.31-42
    • /
    • 2021
  • In the modern era, radio wave analysis is necessary for various fields of engineering, and interpretation of this is also indispensable. Self-driving cars need multiple different electronic components, and thus accurate and fast electromagnetic simulator for this kind of complex radio environment is required for self-driving simulations. Accordingly, the demand for self-driving simulators as well as existing electromagnetic analysis software has increased. This paper briefly describes the characteristics of numerical analysis techniques for electromagnetic analysis, self-driving simulation software, and conventional electromagnetic simulation software and also summarizes the characteristics of each software. Finally, the verification of the result from in-house code compared to HFSS is demonstrated.