• 제목/요약/키워드: Radio Sensor

검색결과 503건 처리시간 0.033초

태양 위치 측정용 전파 센서 수신기의 설계 및 제작 (Design and Implementation of Radio Sensor Receiver for Measuring the Position of the Sun)

  • 박진우;최연웅;조홍렬;손홍민
    • 한국전자파학회논문지
    • /
    • 제20권9호
    • /
    • pp.943-953
    • /
    • 2009
  • 본 논문에서는 추적식 태양광 발전 시스템에 응용하기 위한 태양 위치 측정용 전파 센서 수신기의 설계, 제작 및 성능 실험에 관한 과정 및 결과를 소개한다. 먼저, 전파 센서에 대한 요구 성능인 ${\pm}5^{\circ}$ 이내의 위치 측정 오차 범위를 만족시키기 위한 수신기의 사양을 구하였고, 이를 토대로 수신기를 설계하였다. 설계된 수신기의 시스템 이득 및 잡음 지수의 budget 분석을 통해 설계의 적절성을 점검하였으며, 이 결과를 활용하여 수신 주파수 5.1 GHz, 대역폭 104 MHz로 69 dB의 시스템 이득과 0.46 K 이내의 수신 감도를 갖는 고이득, 고감도 광대역 수신기를 제작하였다. 제작된 수신기와 표준 혼 안테나로 구성된 전파 센서로 흐린 날 실제 태양을 대상으로 실험한 결과, ${\pm}4^{\circ}$ 이내의 오차 범위로 태양의 위치를 실시간으로 측정하는데 성공하여 요구 성능이 만족되었음을 검증하였다.

Joint Radio Selection and Relay Scheme through Optimization Model in Multi-Radio Sensor Networks

  • Lee, HyungJune
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4451-4466
    • /
    • 2014
  • We present joint radio selection and relay scheme that delivers data from a source to a sink in heterogeneous stationary sensor networks consisting of various radio interfaces. The proposed scheme finds the optimal relay nodes and their corresponding radio interfaces that minimize energy consumption throughout the network while satisfying the end-to-end packet deadline requirement. We formulate the problem of routing through radio interface selection into binary integer programs, and obtain the optimal solution by solving with an optimization solver. We examine a trade-off relationship between energy consumption and packet delay based on network level simulations. We show that given the end-to-end deadline requirement, our routing algorithm finds the most energy-efficient routing path and radio interface across mesh hops. We demonstrate that the proposed routing scheme exploits the given packet delivery time to turn into network benefit of reducing energy consumption compared to routing based on single radio interface.

Design and Fabrication of Low Power Sensor Network Platform for Ubiquitous Health Care

  • Lee, Young-Dong;Jeong, Do-Un;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1826-1829
    • /
    • 2005
  • Recent advancement in wireless communications and electronics has enabled the development of low power sensor network. Wireless sensor network are often used in remote monitoring control applications, health care, security and environmental monitoring. Wireless sensor networks are an emerging technology consisting of small, low-power, and low-cost devices that integrate limited computation, sensing, and radio communication capabilities. Sensor network platform for health care has been designed, fabricated and tested. This system consists of an embedded micro-controller, Radio Frequency (RF) transceiver, power management, I/O expansion, and serial communication (RS-232). The hardware platform uses Atmel ATmega128L 8-bit ultra low power RISC processor with 128KB flash memory as the program memory and 4KB SRAM as the data memory. The radio transceiver (Chipcon CC1000) operates in the ISM band at 433MHz or 916MHz with a maximum data rate of 76.8kbps. Also, the indoor radio range is approximately 20-30m. When many sensors have to communicate with the controller, standard communication interfaces such as Serial Peripheral Interface (SPI) or Integrated Circuit ($I^{2}C$) allow sharing a single communication bus. With its low power, the smallest and low cost design, the wireless sensor network system and wireless sensing electronics to collect health-related information of human vitality and main physiological parameters (ECG, Temperature, Perspiration, Blood Pressure and some more vitality parameters, etc.)

  • PDF

Analysis of Channel Access Delay in CR-MAC Protocol for Ad Hoc Cognitive Radio Wireless Sensor Networks without a Common Control Channel

  • Joshi, Gyanendra Prasad;Nam, Seung Yeob;Acharya, Srijana;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권3호
    • /
    • pp.911-923
    • /
    • 2014
  • Ad hoc cognitive radio wireless sensor networks allow secondary wireless sensor nodes to recognize spectrum opportunities and transmit data. Most existing protocols proposed for ad hoc cognitive radio wireless sensor networks require a dedicated common control channel. Allocating one channel just for control packet exchange is a waste of resources for channel-constrained networks. There are very few protocols that do not rely on a common control channel and that exchange channel-negotiation control packets during a pre-allocated time on the data channels. This, however, can require a substantial amount of time to access the channel when an incumbent is present on the channel, where the nodes are intended to negotiate for the data channel. This study examined channel access delay on cognitive radio wireless sensor networks that have no dedicated common control channel.

Wake-Up Radio를 활용한 지역화 TSCH 슬롯프레임 기반 항공 데이터 수집 연구 (Regionalized TSCH Slotframe-Based Aerial Data Collection Using Wake-Up Radio)

  • 권정혁;최효현;김의직
    • 사물인터넷융복합논문지
    • /
    • 제8권2호
    • /
    • pp.1-6
    • /
    • 2022
  • 본 논문은 Wake-up radio를 활용한 지역화 Time Slotted Channel Hopping (TSCH) 슬롯프레임 기반 항공 데이터 수집 기법을 제안한다. 제안하는 기법은 무인항공기가 대규모 서비스 영역 내 배치된 센서 기기들의 데이터를 수집할 때 소요되는 지연 시간 및 소모 에너지를 최소화하는 것을 목표로 한다. 이를 위해, 제안 기법은 서비스 영역을 다수의 지역으로 분할하고, 각 지역 내 센서 기기들이 요구하는 셀의 수에 따라 지역별로 TSCH 슬롯프레임의 길이를 결정한다. 이후, 각 지역 내 센서 기기들의 ID를 활용하여 TSCH 슬롯프레임 내 데이터 전송 전용 셀을 할당한다. 에너지 효율적인 데이터 수집을 위해, 센서 기기는 Wake-up radio를 활용한다. 구체적으로, 센서 기기는 Wake-up radio를 활용하여 비콘 수신 및 데이터 전송을 위해 할당된 셀에서만 네트워크 인터페이스를 활성화한다. 시뮬레이션 결과는 제안 기법이 기존 기법 대비 지연 시간 및 에너지 소모 측면에서 더 우수한 성능을 가지는 것을 보여주었다.

Exploiting cognitive wireless nodes for priority-based data communication in terrestrial sensor networks

  • Bayrakdar, Muhammed Enes
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.36-45
    • /
    • 2020
  • A priority-based data communication approach, developed by employing cognitive radio capacity for sensor nodes in a wireless terrestrial sensor network (TSN), has been proposed. Data sensed by a sensor node-an unlicensed user-were prioritized, taking sensed data importance into account. For data of equal priority, a first come first serve algorithm was used. Non-preemptive priority scheduling was adopted, in order not to interrupt any ongoing transmissions. Licensed users used a nonpersistent, slotted, carrier sense multiple access (CSMA) technique, while unlicensed sensor nodes used a nonpersistent CSMA technique for lossless data transmission, in an energy-restricted, TSN environment. Depending on the analytical model, the proposed wireless TSN environment was simulated using Riverbed software, and to analyze sensor network performance, delay, energy, and throughput parameters were examined. Evaluating the proposed approach showed that the average delay for sensed, high priority data was significantly reduced, indicating that maximum throughput had been achieved using wireless sensor nodes with cognitive radio capacity.

The Design of a Ultra-Low Power RF Wakeup Sensor for Wireless Sensor Networks

  • Lee, Sang Hoon;Bae, Yong Soo;Choi, Lynn
    • Journal of Communications and Networks
    • /
    • 제18권2호
    • /
    • pp.201-209
    • /
    • 2016
  • In wireless sensor networks (WSNs) duty cycling has been an imperative choice to reduce idle listening but it introduces sleep delay. Thus, the conventional WSN medium access control protocols are bound by the energy-latency tradeoff. To break through the tradeoff, we propose a radio wave sensor called radio frequency (RF) wakeup sensor that is dedicated to sense the presence of a RF signal. The distinctive feature of our design is that the RF wakeup sensor can provide the same sensitivity but with two orders of magnitude less energy than the underlying RF module. With RF wakeup sensor a sensor node no longer requires duty cycling. Instead, it can maintain a sleep state until its RF wakeup sensor detects a communication signal. According to our analysis, the response time of the RF wakeup sensor is much shorter than the minimum transmission time of a typical communication module. Therefore, we apply duty cycling to the RF wakeup sensor to further reduce the energy consumption without performance degradation. We evaluate the circuital characteristics of our RF wakeup sensor design by using Advanced Design System 2009 simulator. The results show that RF wakeup sensor allows a sensor node to completely turn off their communication module by performing the around-the-clock carrier sensing while it consumes only 0.07% energy of an idle communication module.

Multiple Sink Nodes to Improve Performance in WSN

  • Dick, Mugerwa;Alwabel, Mohammed;Kwon, Youngmi
    • 한국멀티미디어학회논문지
    • /
    • 제22권6호
    • /
    • pp.676-683
    • /
    • 2019
  • Wireless Sensor Networks (WSNs) consist of multiple tiny and power constrained sensors which use radio frequencies to carry out sensing in a designated sensor area. To effectively design and implement reliable WSN, it is critical to consider models, protocols, and algorithms that can optimize energy consumption of all the sensor nodes with optimal amount of packet delivery. It has been observed that deploying a single sink node comes with numerous challenges especially in a situation with high node density and congestion. Sensor nodes close to a single sink node receive more transmission traffic load compared to other sensors, thus causing quick depletion of energy which finally leads to an energy hole and sink hole problems. In this paper, we proposed the use of multiple energy efficient sink nodes with brute force technique under optimized parameters to improve on the number of packets delivered within a given time. Simulation results not only depict that, deploying N sink nodes in a sensor area has a maximum limit to offer a justifiable improvement in terms of packet delivery ratio but also offers a reduction in End to End delay and reliability in case of failure of a single sink node, and an improvement in the network lifetime rather than deploying a single static sink node.

압전소자를 이용한 무선 손상자현 스마트 콘크리트의 개발 (Development of the Wireless-Diagnosis Smart Concrete using PZT for Damage)

  • 김이성;이수곤;김화중
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.416-421
    • /
    • 2005
  • Concrete are brittle materials and they are which come to brittle fracture rapidly by progress of cracks. Therefore, what the time for repairing the damage portion is understands importantly by such cracks. When they happened the glass pipe similar to concrete was used. Such a glass pipe can insert repair material in an inside, or can use it by switch. They are interested in the crack monitoring of structure using FM radio sensor and PZT sensor. In this study, the monitoring to a crack was studied using FM radio sensor and PZT sensor. Therefore, the purpose of this study is the fundamental research which detects damages of main members using the compound sensor which consisted of the radio sensors of resistance, PZT, and FM system.

  • PDF

WSN 을 위한 초저전력 MICS RF 송수신기 기술 개요 및 설계 기법 (Ultra-Low Power MICS RF Transceiver Design for Wireless Sensor Network)

  • 김규원;김유정;한정환
    • 반도체공학회 논문지
    • /
    • 제2권1호
    • /
    • pp.9-16
    • /
    • 2024
  • 본 논문에서는 무선 센서 네트워크를 위한 생체이식형 초저전력 MICS RF 트랜시버 설게에 대해 다룬다. 400 MHz MICS 표준은 WBAN 무선 센서 시스템 구현을 위해, 인체 내 전파적 특성 및 주변 네트워크와의 간접 최소화하며 고려되었다. 본 논문은 MICS 표준에 부합하는 시스템 및 송수신기 설계를 위한 link budget 및 다양한 송수신 아키텍쳐, 초저전력 송수신기 회로기법을 포함한다.