• Title/Summary/Keyword: Radio Resources

Search Result 339, Processing Time 0.023 seconds

Applying Artificial Intelligence Based on Fuzzy Logic for Improved Cognitive Wireless Data Transmission: Models and Techniques

  • Ahmad AbdulQadir AlRababah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.13-26
    • /
    • 2023
  • Recently, the development of wireless network technologies has been advancing in several directions: increasing data transmission speed, enhancing user mobility, expanding the range of services offered, improving the utilization of the radio frequency spectrum, and enhancing the intelligence of network and subscriber equipment. In this research, a series of contradictions has emerged in the field of wireless network technologies, with the most acute being the contradiction between the growing demand for wireless communication services (on operational frequencies) and natural limitations of frequency resources, in addition to the contradiction between the expansions of the spectrum of services offered by wireless networks, increased quality requirements, and the use of traditional (outdated) management technologies. One effective method for resolving these contradictions is the application of artificial intelligence elements in wireless telecommunication systems. Thus, the development of technologies for building intelligent (cognitive) radio and cognitive wireless networks is a technological imperative of our time. The functions of artificial intelligence in prospective wireless systems and networks can be implemented in various ways. One of the modern approaches to implementing artificial intelligence functions in cognitive wireless network systems is the application of fuzzy logic and fuzzy processors. In this regard, the work focused on exploring the application of fuzzy logic in prospective cognitive wireless systems is considered relevant.

Joint Optimization for Congestion Avoidance in Cognitive Radio WMNs under SINR Model

  • Jia, Jie;Lin, Qiusi;Chen, Jian;Wang, Xingwei
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.550-553
    • /
    • 2013
  • Due to limited spectrum resources and differences in link loads, network congestion is one of the key issues in cognitive radio wireless mesh networks. In this letter, a congestion avoidance model with power control, channel allocation, and routing under the signal-to-interference-and-noise ratio is presented. As a contribution, a nested optimization scheme combined with a genetic algorithm and linear programming solver is proposed. Extensive simulation results are presented to demonstrate the effectiveness of our algorithm.

A D2D communication architecture under full control using SDN

  • Ngo, Thanh-Hai;Kim, Younghan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3435-3454
    • /
    • 2016
  • Device-to-device (D2D) communication is a potential solution to the incessant increase in data traffic on cellular networks. The greatest problem is how to control the interference between D2D users and cellular mobile users, and between D2D users themselves. This paper proposes a solution for this issue by putting the full control privilege in cellular network using the software-defined networking (SDN) concept. A software virtual switch called Open vSwitch and several components are integrated into mobile devices for data forwarding and radio resource mapping, whereas the control functions are executed in the cellular network via a SDN controller. This allows the network to assign radio resources for D2D communication directly, thus reducing interference. This solution also brings out many benefits, including resource efficiency, energy saving, topology flexibility, etc. The advantages and disadvantages of this architecture are analyzed by both a mathematical method and a simple implementation. The result shows that implementation of this solution in the next generation of cellular networks is feasible.

Transmitted Power Based Dynamic Rate Control for CDMA2000 1x System (CDMA2000 1x 시스템을 위한 송신전력기반 전송률 제어방안)

  • Park Hyung-Kun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.498-500
    • /
    • 2005
  • In a CDMA system, the capacity is variable and mainly depends on multiple access interference. The multiple access interference has a deep relationship with transmitted or received power The capacity of CDMA2000 1x system is considered to be limited by the forward link capacity Different rate data traffic requires different transmitted power and rate controlling enables the system utilize radio resource more efficiently. A very simple rate control algorithm for data calls in CDMA2000 1x system is proposed. In the proposed algorithm, by monitoring the total transmit power, we can simply adjust data rate to channel conditions and efficiently use radio resources. The proposed algorithm is easy to implement in power controlled CDMA systems.

Transmitted power based dynamic rate control for CDMA2000 1x system (CDMA2000 1x 시스템을 위한 송신전력기반 전송률 제어방안)

  • Park, Hyung-Kun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.221-223
    • /
    • 2005
  • In a CDMA system, the capacity is variable and mainly depends on multiple access interference. The multiple access interference has a deep relationship with transmitted or received power. The capacity of CDMA2000 1x system is considered to be limited by the forward link capacity. Different rate data traffic requires different transmitted power and rate controlling enables the system utilize radio resource more efficiently. A very simple rate control algorithm fer data calls in CDMA2000 1x system is proposed. In the proposed algorithm, by monitoring the total transmit power, we can simply adjust data rate to channel conditions and efficiently use radio resources. The proposed algorithm is easy to implement in power controlled CDMA systems.

  • PDF

An Auctioning Mechanism for Green Radio

  • Comaniciu, Cristina;Mandayam, Narayan B.;Poor, H. Vincent;Gorce, Jean-Marie
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.114-121
    • /
    • 2010
  • In this paper, an auctioning strategy is proposed for cellular networks that ensures net energy savings. The pricing scheme, in conjunction with a two dimensional bid structure, incentivizes cooperation at the terminal nodes for better interference management at receivers and for cooperative relaying. It is shown that, for the proposed auctioning strategy, network operators are guaranteed revenue gains, mobile nodes' dominant strategy is to bid their true valuation of their energy resources, and overall effective energy gains occur under the assumption of a reserve price for bidding. Simulation results show that significant energy savings can be achieved by employing this auctioning mechanism for a 3G cellular set-up.

Radio resource allocation of TD-HSDPA based on position location of mobile terminals (TD-HSDPA에서 단말의 위치에 따른 무선자원 할당)

  • Yeo, Woon-Young;Kim, Seong-Keun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.271-272
    • /
    • 2008
  • TD-SCDMA combines TDMA and CDMA components to provide more efficient use of radio resources, and includes a new feature called HSDPA (high-speed downlink packet access) in the R5 stage. The TD-HSDPA supports high-speed traffic with a shared channel, but its uplink mechanism causes feedback problem for scheduling. Since the base station of TD-SCDMA can estimate the location of mobile terminals precisely, it can also estimate the possible path loss. In this paper, the base station utilizes the estimated path loss for scheduling, which is related with CQI (channel quality indicator) values. The proposed mechanism can provide the TD-HSDPA scheduler with an intial CQI value for efficient transmission.

  • PDF

Study on Efficient Frequency Guard Band Decision Rule for Interference Avoidance

  • Park, Woo-Chul;Kim, Eun-Cheol;Kim, Jin-Young;Kim, Jae-Hyun
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.182-187
    • /
    • 2009
  • When we assign frequency resources to a new radio service, the existing services need not to be interfered with by the new service. Therefore, when we make a frequency assignment, a guard band is necessary to separate adjacent frequency bands so that both can transmit simultaneously without interfering with each other. In this paper, we propose an efficient frequency guard band decision rule for avoiding interference between radio services. The guard band is established based on the probability of interference in the previously arranged scenario. The interference probability is calculated using the spectrum engineering advanced Monte Carlo(MC) analysis tool(SEAMCAT). After applying the proposed algorithm to set up the frequency guard band, we can decide on the guard band appropriately because the result satisfies the predefined criterion.

Adaptive Resource Allocation for Uplink Carrier Aggregation Scheme in LTE-A-Type Networks

  • Choi, Yonghoon;Lee, Yonggyu;Chang, Kapseok
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.759-762
    • /
    • 2012
  • Carrier aggregation is an essential feature in the Long Term Evolution-Advanced (LTE-A) system, which allows the scalable expansion of the effective bandwidth to be delivered to user equipment (UE) through the concurrent use of radio resources across multiple component carriers (CCs). This system's optimal radio-resource use has received much attention under simultaneous access (SA) scenarios for multiple CCs (m-CCs). This letter establishes how many CCs a UE should simultaneously connect to maintain maximum uplink capacity. Under the m-CC LTE-A system, the spectral efficiency of the m-CC SA scheme ($m{\geq}2$) is compared with that of CC selection (CCS). Numerical results reveal that the 2-CC SA scheme outperforms CCS and performs almost equally to the m-CC SA scheme ($m{\geq}3$).

Interference Effects of Low-Power Devices on the UE Throughput of a CR-Based LTE System

  • Kim, Soyeon;Sung, Wonjin
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.353-359
    • /
    • 2014
  • Recently, the use of mobile devices has increased, and mobile traffic is growing rapidly. In order to deal with such massive traffic, cognitive radio (CR) is applied to efficiently use limited-spectrum resources. However, there can be multiple communication systems trying to access the white space (unused spectrum), and inevitable interference may occur to cause mutual performance degradation. Therefore, understanding the effects of interference in CR-based systems is crucial to meaningful operations of these systems. In this paper, we consider a long-term evolution (LTE) system using additional spectra by accessing the TV white space, where low-power devices (LPDs) are licensed primary users, in addition to TV broadcasting service providers. We model such a heterogeneous system to analyze the co-existence problem and evaluate the interference effects of LPDs on LTE user equipment (UE) throughput. We then present methods to mitigate the interference effects of LPDs by 'de-selecting' some of the UEs to effectively increase the overall sector throughput of the CR-based LTE system.