• Title/Summary/Keyword: Radio Receiver

Search Result 636, Processing Time 0.028 seconds

Effect of Interference in CSMA/CA Based MAC Protocol for Underwater Network (CSMA/CA 기반 수중 통신망에서 간섭의 영향 연구)

  • Song, Min-je;Cho, Ho-shin;Jang, Youn-seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1631-1636
    • /
    • 2015
  • With the advance of wireless communication technology in terrestrial area, underwater communication is also evolving very fast from a simple point-to-point transmission to an elaborate networked communications. Underwater acoustic channel has quite different features comparing with the terrestrial radio channel in terms of propagation delay, Doppler shift, multipath, and path loss. Thus, existing technologies developed for terrestrial communication might not work properly in underwater channel. Especially medium access control (MAC) protocols which highly depend on propagation phenomenon should be newly designed for underwater network. CSMA/CA has drawn lots of attention as a candidate of underwater MAC protocol, since it is able to resolve a packet collision and the hidden node problem. However, a received signal could be degraded by the interferences from the nodes locating outside the receiver's propagation radius. In this paper, we study the effects of interference on the CSMA/CA based underwater network. We derived the SNR with the interference using the sonar equation and analyzed the degradation of the RTS/CTS effects. These results are compared with the terrestrial results to understand the differences. Finally we summarized the design considerations in CSMA/CA based underwater network.

An Advanced MCL Method for a Sharing Analysis of Mobile Communication Systems beyond 3G (차세대 이동통신 시스템의 주파수 공유분석을 위한 개선된 MCL 방법)

  • Chung Woo-Ghee;Yoon Hyun-Goo;Jo Han-Shin;Lim Jae-Woo;Yook Jong-Gwan;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.307-316
    • /
    • 2006
  • In this paper the analytical method, namely advanced minimum coupling loss(A-MCL), was proposed in order to analyze the coexistence of OFDM-based systems beyond 3G(B3G) with point-to point(PP) fixed service(FS) microwave systems. Our proposed method is based on a power spectral density(PSD) analysis. So it can be easily applicable to analyze the coexistence of OFDM-based systems B3G using flexible spectrum usage(FSU) with other systems, where the conventional MCL method cannot allocate transmit power partially to some subcarriers which overlap the band of a victim system. By applying the conventional MCL method and the A-MCL method, interfering power levels at the receiver of a interfered system are respectively calculated. A-MCL can calculate interference power more accurately than MCL by the maximum value of 4.5 dB. Therefore it can be concluded that our prosed method, namely A-MCL, is applicable to a sharing analysis of OFDM-based systems B3G.

The Study on Empirical Propagation Path Loss Model in the Antler Terminal Environment (엔틀러 터미널 환경에서 실험적인 패스 로스 모델에 관한 연구)

  • Kim, Kyung-Tae;Kim, Jin-Wook;Jo, Yun-Hyun;Kim, Sang-Uk;Yoon, In-Seop;Park, Hyo-Dal
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.516-523
    • /
    • 2013
  • In this paper, The path loss model of Air Traffic Control(ATC) telecommunication radio channel has been studied at the Incheon International Airport(IIA) with the terminal with two antlers. We measured two frequencies among VHF/UHF channel bands. The transmitting site radiated the Continuous Wave(CW). The propagation measurement was taken using the moving vehicle equipped with receiver and antenna. The transmitting power, frequency and antenna height are the same as the current operating condition. The path loss exponent and intercept parameters were extracted by the basic path loss model and hata model. The path loss exponents at passager terminal areas were 3.32 and 3.10 respectively in 128.2 MHz and 269.1 MHz. The deviation of prediction error is 9.69 and 9.65. The new path loss equation at the terminal area was also developed using the derived path loss parameters. The new path loss was compared with other models. This result will be helpful for the ATC site selection and service quality evaluation.

SINR Maximizing Collaborative Beamforming with Enhanced Robustness Against Antenna Correlation (안테나 간 상관도에 강건한 SINR 최대화 협력적 빔포밍 기법)

  • Kim, Jae-Won;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.95-103
    • /
    • 2009
  • In this paper, a generation method of transmit and receive beamforming vectors based on base station cooperation is proposed which maximizes the user SINR in mobile cellular multi-user MIMO systems. There are two main sources of interference which deteriorate the performance of the system, i.e. the inter-user interference caused by the usage of the same radio resource for multiple users in the system, and the inter-cluster interference from neighboring base stations which are not participating in cooperative transmission. The proposed scheme cancels out the inter-user interference by using the block diagonalization(BD) method, and mitigate the inter-cluster interference by using optimal transmit and receive beamforming vectors based on optimal combining(OC) with the statistic information of inter-cluster interference. We perform computer simulations to verify the performance of the proposed scheme, and compare the result to the conventional performance obtained from utilizing the receiver side information only or utilizing the information from neither sides. The performance evaluations are conducted not only over the independent MIMO channels, but over correlated MIMO channels to demonstrate the robustness of the proposed scheme over the channels with correlation among antennas.

A development of DS/CDMA MODEM architecture and its implementation (DS/CDMA 모뎀 구조와 ASIC Chip Set 개발)

  • 김제우;박종현;김석중;심복태;이홍직
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1210-1230
    • /
    • 1997
  • In this paper, we suggest an architecture of DS/CDMA tranceiver composed of one pilot channel used as reference and multiple traffic channels. The pilot channel-an unmodulated PN code-is used as the reference signal for synchronization of PN code and data demondulation. The coherent demodulation architecture is also exploited for the reverse link as well as for the forward link. Here are the characteristics of the suggested DS/CDMA system. First, we suggest an interlaced quadrature spreading(IQS) method. In this method, the PN coe for I-phase 1st channel is used for Q-phase 2nd channels and the PN code for Q-phase 1st channel is used for I-phase 2nd channel, and so on-which is quite different from the eisting spreading schemes of DS/CDMA systems, such as IS-95 digital CDMA cellular or W-CDMA for PCS. By doing IQS spreading, we can drastically reduce the zero crossing rate of the RF signals. Second, we introduce an adaptive threshold setting for the synchronization of PN code, an initial acquistion method that uses a single PN code generator and reduces the acquistion time by a half compared the existing ones, and exploit the state machines to reduce the reacquistion time Third, various kinds of functions, such as automatic frequency control(AFC), automatic level control(ALC), bit-error-rate(BER) estimator, and spectral shaping for reducing the adjacent channel interference, are introduced to improve the system performance. Fourth, we designed and implemented the DS/CDMA MODEM to be used for variable transmission rate applications-from 16Kbps to 1.024Mbps. We developed and confirmed the DS/CDMA MODEM architecture through mathematical analysis and various kind of simulations. The ASIC design was done using VHDL coding and synthesis. To cope with several different kinds of applications, we developed transmitter and receiver ASICs separately. While a single transmitter or receiver ASC contains three channels (one for the pilot and the others for the traffic channels), by combining several transmitter ASICs, we can expand the number of channels up to 64. The ASICs are now under use for implementing a line-of-sight (LOS) radio equipment.

  • PDF

Novel LTE based Channel Estimation Scheme for V2V Environment (LTE 기반 V2V 환경에서 새로운 채널 추정 기법)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.3-9
    • /
    • 2017
  • Recently, in 3rd Generation Partnership Project(3GPP), there is a study of the Long Term Evolution(LTE) based vehicle communication which has been actively conducted to provide a transport efficiency, telematics and infortainment. Because the vehicle communication is closely related to the safety, it requires a reliable communication. Because vehicle speed is very fast, unlike the movement of the user, radio channel is rapidly changed and generate a number of problems such as transmission quality degradation. Therefore, we have to continuously updates the channel estimates. There are five types of conventional channel estimation scheme. Least Square(LS) is obtained by pilot symbol which is known to transmitter and receiver. Decision Directed Channel Estimation(DDCE) scheme uses the data signal for channel estimation. Constructed Data Pilot(CDP) scheme uses the correlation characteristic between adjacent two data symbols. Spectral Temporal Averaging(STA) scheme uses the frequency-time domain average of the channel. Smoothing scheme reduces the peak error value of data decision. In this paper, we propose the novel channel estimation scheme in LTE based Vehicle-to-Vehicle(V2V) environment. In our Hybrid Reliable Channel Estimation(HRCE) scheme, DDCE and Smoothing schemes are combined and finally the Linear Minimum Mean Square Error(LMMSE) scheme is applied to minimize the channel estimation error. Therefore it is possible to detect the reliable data. In simulation results, overall performance can be improved in terms of Normalized Mean Square Error(NMSE) and Bit Error Rate(BER).