• Title/Summary/Keyword: Radio Receiver

Search Result 634, Processing Time 0.026 seconds

A NEXT GENERATION MULTI-BEAM FOCAL PLANE ARRAY RECEIVER OF TRAO FOR 86-115 GHZ BAND

  • Chung Moon-Hee;Khaikin Vladimir B.;Kim Hyo-Ryoung;Lee Chang-Hoon;Kim Kwang-Dong;Park Ki-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • The noise temperature of existing millimeter-wave receivers is already within two or three times quantum noise limit. One of practical ways to increase the observation speed of single dish radio telescope without longer integration time is use of multi-beam focal plane array receiver as demonstrated in several large single dish radio telescopes. In this context the TRAO (Taeduk Radio Astronomy Observatory), which operates a 143n Cassegrain radio telescope, is planning to develop a 4 x 4 beams focal plane array SIS receiver system for 86-115 GHz band. Even though millimeter-wave HEMT LNA-based receivers approach the noise temperature comparable to the SIS receiver at W-band, it is believed that the receiver based on SIS mixer seems to offer a bit more advantages. The critical part of the multi-beam array receiver will be sideband separating SIS mixers. Employing such a type of SIS mixer makes it possible to simplify the quasi-optics of receiver. Otherwise, an SSB filter should be used in front of the mixer or some sophisticated post-processing of observation data is needed. In this paper we will present a preliminary design concept and components needed for the development of a new 3 mm band multi-beam focal plane array receiver.

Receiver-Centric Spectrum Sensing for Cognitive Radio Systems (무선인지 시스템을 위한 수신기 중심 스펙트럼 센싱 기술)

  • Shin, Oh-Soon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.43-48
    • /
    • 2011
  • Cognitive radio is accepted as an effective and promising approach for resolving the spectrum scarcity problem by allowing secondary users to borrow unused spectrum from primary users. A method of identifying busy and empty spectrum at the given time and space, which is called spectrum sensing, constitutes an essential element of the cognitive radio. In this paper, we propose a receiver-centric spectrum sensing scheme which attempts to detect the primary receiver rather than the primary transmitter. It is shown that the proposed receiver-centric sensing approach results in more efficient spectrum utilization than the conventional transmitter-centric sensing.

Performance of Dual Polarized MIMO System using Six-Port Receiver for Cognitive Radio

  • Lee Sang-Yub;Yang Wan-Cheol;Lee Jeong-Suk;Kim Hak-Sun
    • Broadcasting and Media Magazine
    • /
    • v.11 no.1
    • /
    • pp.78-85
    • /
    • 2006
  • Cognitive radio is a paradigm for wireless communication in which either network of wireless node itself changes particular transmission or reception parameters to execute its tasks efficiently without interfering with the licensed users. This paper represents a performance of the cognitive radio technology on dual polarized MIMO system using six-port receiver. Six-port technology is well known direct conversion receiver. In this paper, a six-port phase discriminator based polarization signal separation is shown. That is, the SER(Symbol Error Rate) performance is improved using polarization separator and simple receiver architecture is proposed applying six-port receiver. The six-port technology has priority to adapt changeable frequency system and variable environments for cognitive radio. In general, dual polarized MIMO system has good capacity and quality using polarization separator [1].

Design and Implementation of Radio Sensor Receiver for Measuring the Position of the Sun (태양 위치 측정용 전파 센서 수신기의 설계 및 제작)

  • Park, Jin-Woo;Choi, Yeon-Ung;Cho, Hong-Lyul;Son, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.943-953
    • /
    • 2009
  • In this paper, we propose a radio sensor to measure the position of the sun for the solar tracker of a photovoltaic system. In order to satisfy the requirement for the measurement accuracy within ${\pm}5^{\circ}$, the sensor receiver with high gain, high sensitivity and wide bandwidth is designed and implemented. The receiver has the bandwidth of 104 MHz, the system gain of 69 dB and the sensitivity of 0.46 K at 5.1 GHz. The processes of design and implementation of the radio sensor receiver are described in this paper. The effectiveness of the proposed radio sensor in the measurement of the position of the sun is demonstrated experimentally under the condition of cloud cover. The results show the radio sensor can measure the position of the sun within the accuracy of ${\pm}4^{\circ}$ successfully.

An Implementation of the DSP-based Digital Radio Modiale Receiver (DSP 기반 DRM 수신기 구현)

  • Park, Kyung-Won;Kim, Sung-Jun;Seo, Jeong-Wook;Kwon, Ki-Won;Park, Se-Ho;Paik, Jong-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.4
    • /
    • pp.235-243
    • /
    • 2008
  • In this paper, a software-based Digital Radio Modiale(DRM) receiver is implemented on a Digital Signal Processor(DSP). DRM stands for the European radio broadcasting standard to bring AM radio into digital radio, designed to work at frequencies below 30MHz. DRM can offer various data services such as text messaging and slideshow services as well as audio services. The DRM receiver implemented on the Tensilica DSP core performs well at low signal strength indication of -102dBm.

  • PDF

A Study on DID Implementation for Wireless Calling System using Smart-device (스마트 기기를 이용한 무선호출용 DID구현에 대한 연구)

  • Cho, Youngseok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • In this time, as an industrial society developed to a welfare society, more and more people want their quality of lives upgraded and specially customized service by mass production/mass consumption. And it leads to an increase of requiring service. There're active developments and studies on various IT equipment as the requirement made IT devices used in service. In this paper, we try to design and realize radio paging DID by using smart device to be used as a receiver of a radio pager which is broadly used at face to face service. Firstly, we used MCU to design and implement Wireless Calling Gateway which change radio calling signal of ISM band to smart device. A receiver of wireless caller used original receiver module. Also it used bluetooth module to communicate with smart device. It was possible to have satisfactory communication since radio paging signal converter and smart device were linked in 3M. Secondly, to indicate various paging information delivered from a radio pager, we realized DID application program by using Smart PAD. As a result, we could indicate various information compared to an original receiver which only could indicate letters or numeric data. Secondly, we implemented the DID app for wireless calls that can display a variety of information sent from a wireless pager. Was implemented using the Smart Pad. As a result, it is shown that can display a variety of information than the existing receiver.

Prediction of the Intermodulation Interference on the AMPS Receiver Exposed to Radiation from the Low Power Radio Devices (소출력 무선기기의 방사에 노출된 AMPS 수신기의 상호변조 간섭 예측)

  • Kim, Che-Young;Kim, Dang-Oh
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1242-1250
    • /
    • 2008
  • In this paper, we predicted the radiation field strength from the low power radio devices to force the radio interference on the AMPS receiver. The predicted value of 79.13[$dB{\mu}V/m$] is the upper value of radiation against the intermodulation interference emanated from the low power radio devices. To show the validity of the suggested values theoretical analysis on intermodulation and modeling of the AMPS receiver are performed, and also measurements on the AMPS receiver IC are carried out. The resultant numerals show the good match between them within the allowable tolerances.

Introducing Software Defined Radio to 4GWireless: Necessity, Advantage, and Impediment

  • Zamat, Hassan;Nassar, Carl R.
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.344-350
    • /
    • 2002
  • This work summarizes the current state of the art in software radio for 4G systems. Specifically, this work demonstrates that classic radio structures, e.g., heterodyne reception, homodyne reception, and their improved implementations, are inadequate selections for multi-mode reception. This opens the door to software defined radio, a novel reception architecture which promises ease in multi-band, multi-protocol design. The work presents the many advantages of such an architecture, including flexibility, reduced cost via component reduction, and improved reliability via, e.g., the elimination of environmental instability. The work also explains the limitations that currently curtail the widespread use of SDR, including issues surrounding A/D converters, management of software and power, and clock generation. This provides direction for future research to enable the broad applicability of SDR in 4G cellular and beyond.

Investigation of Single-Input Multiple-Output Wireless Power Transfer Systems Based on Optimization of Receiver Loads for Maximum Efficiencies

  • Kim, Sejin;Hwang, Sungyoun;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.145-153
    • /
    • 2018
  • In this paper, the efficiency of single-input multiple-output (SIMO) wireless power transfer systems is examined. Closed-form solutions for the receiver loads that maximize either the total efficiency or the efficiency for a specific receiver are derived. They are validated with the solutions obtained using genetic algorithm (GA) optimization. The optimum load values required to maximize the total efficiency are found to be identical for all the receivers. Alternatively, the loads of receivers can be adjusted to deliver power selectively to a receiver of interest. The total efficiency is not significantly affected by this selective power distribution. A SIMO system is fabricated and tested; the measured efficiency matches closely with the efficiency obtained from the theory.

Estimation of DOA Measurement System using DBF Receiver (DBF 수신기를 이용한 DOA 측정시스템의 평가)

  • Min, Kyeong-Sik;Park, Chul-Keun;Ko, Jee-Won
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.219-223
    • /
    • 2003
  • This paper describes an estimation of DOA(Direction Of Arrival) measurement system using DBF receiver with linear array antenna. This DBF receiver is composed of resistive FET mixer using low IF mettled. A radio frequency(RF), a local oscillator(LO) and ail intermediate frequency(IF) considered in this research are 2.09 GHz, 2.08 GHz and 10 MHz, respectively. This receiver is composed of a band-pass filter, a low-pass filter, a DC bias circuit. DOA measurement system is consist of linear array antenna, DBF receiver, AD control box and computer in the anechoic chamber. Receiving antenna is 4-array monopole antenna and DBF receiver is 4-Ch resistive FET mixer without amplifier. DOA algorithm is implemented using MUSIC algorithm with high resolution. We show that the results of DOA is $-30^{\circ},\;0^{\circ}$ and $60^{\circ}$, respectively. And we know that DOA estimation error occur by antenna radiation pattern and fabrication error of antenna array.

  • PDF