• Title/Summary/Keyword: Radio Frequency communication

Search Result 1,093, Processing Time 0.028 seconds

An Efficient Power Processing Method for Cognitive Radio (Cognitive Radio에 적합한 효율적인 전력 처리기법)

  • Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.43-48
    • /
    • 2008
  • In this paper, we discuss the transmit power of user in Cognitive Radio environment. Transmit power of user should be operated in order not to give a bad effect to PU(Primary user) and this power can be considered as SINR(Signal to Interference and Noise Ratio) measured in PU. Exact spectrum sensing is required to see which is the vacant frequency. And this spectrum sensing should be operated repeatedly within certain time because the vacant frequency is time-varying. In this paper, we reduce the existing defect by using orthogonal parameter and show the sensing operation is possible if SINR of PU can be guaranteed.

  • PDF

Interference Analysis for Deployment of the Efficient Village Broadcasting Radio System (마을방송 시스템의 효율적 구축을 위한 간섭분석)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.359-364
    • /
    • 2017
  • Since the existing analog village broadcasting system has some technical problems in applying and degradations in performance due to its old equipments, it had been required recently to be changed to a wireless digital system and to develop the standardization. However, it is important to analyze the interference between villages in deploying the efficient digital wireless village broadcasting system. In this paper, simulations for co-channel and adjacent channel interference have been carried out considering digital private mobile radio(dPMR) and digital mobile radio(DMR) systems as a representative mobile radio. These results for frequency reuse and channel separation drawn from the separation distance between villages in co-channel interference and the frequency offset in adjacent interference can be helpful to establish a standard and the testing service in the near future.

Design of Circularly Polarized Multi Band Antenna for Non-Linear Junction Detector System (비선형 소자 탐지 시스템용 원편파 다중 공진 안테나의 설계)

  • Kim, Jeong-Won;Min, Kyoeng-Sik;Park, Chan-Jin;Jeong, Jae-Hwan;Lee, Sak;Kwon, Hae-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.292-299
    • /
    • 2012
  • This paper proposes the design of circularly polarized multi band antenna for a non-linear junction detector (NLJD) system. In order to design for broad bandwidth, the CPW (Co-Planar Waveguide) feeding method is considered in this design. In order to realize the circular polarization, the axial ratio was controlled by inserting a $45^{\circ}$ inclined slot on radiating element and by cutting an edge of the radiating patch. Measurement results of return loss, bandwidth, axial ratio, polarization pattern and gain are agreed well with their simulation results in interested frequency band at 2.4~ 2.44 GHz, 4.84~4.92 GHz, and 7.28~7.32 GHz.

Improving the frequency domain resolution of Wireless signal for observing the Doppler frequency (도플러 주파수 관찰을 위한 무선 신호의 주파수 영역 해상도 향상)

  • Hong, Yerin;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2270-2278
    • /
    • 2017
  • There are many research to find not only user data but also physical information about objects or human in radio signals. And we can obtain physical information from the wireless signals such as RSSI (Received Signal Strength Indicator), Doppler frequency and other values. For example, the Doppler frequency is generated by the object moving physically in wireless signals used for communication. By analyzing the Doppler frequency, the moving speed and direction of the object can be predicted. In this paper, we study the previous research which is to detect the moving objects or human using wireless signals, 802.11a signals. We introduce and verify the method to improve the frequency domain resolution of commercial 802.11a receivers to observe the doppler frequency and obtain the information of the moving objects or human.

RFID Mutual Autentication Protocol Using AES (AES를 이용한 RFID 상호인증 프로토콜)

  • Kim, Seok;Han, Seung-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1963-1969
    • /
    • 2012
  • Recently use of RFID(Radio Frequency Identification) tends to be rapidly increased and will be also extended throughout the whole life. Using radio-frequency data can be recognized automatically in the RFID system is vulnerable to personal information protection or security. And passive tags have a hardware problem is the limit for applying cryptographic. This paper presents an authentication protocol using AES and Nounce. After completing mutual authentication server to access and strengthen security vulnerability to the use of the Nounce, because safety in denial of service attacks.

Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

  • Dhital, Dipesh;Chia, Chen Ciang;Lee, Jung-Ryul;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.244-256
    • /
    • 2010
  • Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented.

Implementation of Low Loss Radome with Hexa mesh for Ku-Band

  • Seo, Kang;JeongJin, Kang
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.555-560
    • /
    • 2022
  • In this study, the insertion loss and phase delay according to the multi-layer structure radome parameters were analyzed using the boundary value solution approach, and the multi-layer structure and hexa mesh structures with low-loss electrical characteristics for the Ku-band transmission/reception frequency of 10.7 ~ 14.5 GHz were designed and manufactured. A hexa mesh was applied to minimize radio wave transmission and scattering, which lowered the transmittance refractive index according to the radio incident angle and minimized dielectric loss through high-density foam. Similar to the simulation result, the transmission loss obtained the gain in a specific receiving frequency band, and in the transmission frequency band, an excellent low loss characteristic was obtained with an insertion loss of 0.8dB or less. The results of this study can be used in radio transmission radomes of low-weight, low-cost end-system protection devices.

Performance analysis of atomic magnetometer and bandwidth-extended loop antenna in resonant phase-modulated magnetic field communication system

  • Hyun Joon Lee;Jung Hoon Oh;Jang-Yeol Kim;In-Kui Cho
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.727-736
    • /
    • 2024
  • Telecommunications through an electrically conductive medium require the use of carrier bands with very-low and ultralow frequencies to establish radiofrequency links in harsh environments. Recent advances in atomic magnetometers operating at very-low frequencies have facilitated the reception of digitally modulated signals. We demonstrate the transmission and reception of quadrature phase-shift keying (QPSK) signals using a multi-resonant loop antenna and atomic magnetometer, respectively. We report the measured error vector magnitude according to the symbol rate for QPSK modulation and analyze the bandwidth of a receiver based on the atomic magnetometer. The multi-resonant loop antenna noticeably enhances the bandwidth by over 70% compared with a single-loop antenna. QPSK modulation for a carrier frequency of 20 kHz and symbol rate of 150 symbols per second verifies the feasibility of demodulation, and the measured error vector magnitude and signal-to-noise ratio are 7.29% and 30.9 dB, respectively.

Analysis of Domestic and Foreign Frequency Demands for 700 MHz Band and Consideration for Building Public Integrated Radio Network (700 MHz 대역의 국내·외 주파수 수요 분석 및 공공통합망 구축시 고려사항)

  • Park, Duk-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1028-1039
    • /
    • 2014
  • After DTV transition, frequency allocation to efficiently utilize 700 MHz band, which is remained as Digital Dividend, is in progress domestically and internationally. This paper investigates global frequency allocation of 700 MHz band and utilization of the band, and analyzes domestic wireless technology methods and requested frequency bandwidth by use. In addition, the paper suggests what needs to be considered in case of building public integrated radio network that focuses on disaster and safety network; the integrated radio network also includes railway network and e-Navigation.

Implementation of Real-time Stereo Frequency Demodulator Using RTL-SDR (RTL-SDR을 이용한 스테레오 주파수 변조 방송의 실시간 수신기 구현)

  • Kim, Young-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.485-494
    • /
    • 2019
  • A software-driven real-time frequency de-modulator is implemented with the aid of universal-serial-bus (USB) type software defined radio dongle. An analog stereo frequency modulation (FM) broadcast signal is down-converted to the basedband analog signal then converted to digital bit streams in the USB dongle. Computer software such as Matlab, Python, and GNU Radio manipulates the incoming bit streams with the technique of digital signal processing. Low pass filtering, band pass filtering, decimation, frequency discriminator, double sideband amplitude demodulation, phase locked loop, and deemphasis function blocks are implemented using such computer languages. Especially, GNU Radion is employed to realize the real-time demodulator.