• 제목/요약/키워드: Radio Frequency Wireless Power Transmission

검색결과 66건 처리시간 0.028초

무선전력전송을 위한 RF-DC 변환기 회로의 성능비교 (Performance comparison of the RF-DC converter circuit for wireless power transmission)

  • 최기주;황희용
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.145-149
    • /
    • 2009
  • A RF-DC converter is one of the most important components for a wireless power transmission. It has been developed for many applications such as space solar power system, and Radio Frequency Identification(RFID). In this paper, we designed three types of RF-DC converter and compare the performance of each. All types RF-DC convertoer have a maximum conversion efficiency at input power level of 0 dBm~5 dBm and RF-DC converter of third type was the best performance that has a 21.9% of conversion efficiency.

  • PDF

Wireless links for global positioning system receivers

  • Casciati, Fabio;Wu, Lijun
    • Smart Structures and Systems
    • /
    • 제10권1호
    • /
    • pp.1-14
    • /
    • 2012
  • Given an object, its positioning in the space is a main concern in structural monitoring and a required feedback in structural health monitoring, structural control and robotics. In addition, to make the sensor unit wireless is a crucial issue for advanced applications. This paper deals with the exploitation of wireless transmission technology to long-term monitoring GPS (Global Positioning System) receivers - like the Leica GMX 902 and the Leica GRX 1200-pro. These GPS receivers consist of five parts: antenna, receiver, user client computer, interface and power supply. The antenna is mounted on the object to be monitored and is connected with the receiver by a coaxial-cable through which the radio frequency signals are transmitted. The receiver unit acquires, tracks and demodulates the satellite signals and provides, through an interface which in this paper is made wireless, the resulting GPS raw data to the user client computer for being further processed by a suitable positioning algorithm. The power supply reaches the computer by a wired link, while the other modules rely on batteries re-charged by power harvesting devices. Two wireless transmission systems, the 24XStream and the CC1110, are applied to replace the cable transmission between the receiver and the user client computer which up to now was the only market offer. To verify the performance and the reliability of this wireless transmission system, some experiments are conducted. The results show a successful cable replacement.

A Novel Design of an RF-DC Converter for a Low-Input Power Receiver

  • Au, Ngoc-Duc;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • 제17권4호
    • /
    • pp.191-196
    • /
    • 2017
  • Microwave wireless power transmission (MWPT) is a promising technique for low and medium power applications such as wireless charging for sensor network or for biomedical chips in case with long ranges or in dispersive media such. A key factor of the MWPT technique is its efficiency, which includes the wireless power transmission efficiency and the radio frequency (RF) to direct current (DC) voltage efficiency of RF-DC converter (which transforms RF energy to DC supply voltage). The main problem in designing an RF-DC converter is the nonlinear characteristic of Schottky diodes; this characteristic causes low efficiency, higher harmonics frequency and a change in the input impedance value when the RF input power changes. In this paper, rather than using harmonic termination techniques of class E or class F power amplifiers, which are usually used to improve the efficiency of RF-DC converters, we propose a new method called "optimal input impedance" to enhance the performance of our design. The results of simulations and measurements are presented in this paper along with a discussion of our design concerning its practical applications.

The Interference Measurement Analysis between 3.412 GHz Band Broadcasting System and UWB Wireless Communication System

  • Song Hong-Jong;Kim Dong-Ku
    • Journal of electromagnetic engineering and science
    • /
    • 제6권1호
    • /
    • pp.76-81
    • /
    • 2006
  • Ultra wideband(UWB) technologies have been developed to exploit a new spectrum resource in substances and to realize ultra-high-speed communication, high precision geo-location, and other applications. The energy of UWB signal is extremely spread from near DC to a few GHz. This means that the interference between conventional narrowband systems and UWB systems is inevitable. However, the interference effects had not previously been studied from UWB wireless systems to conventional wireless systems sharing the frequency bands such as Broadcasting system. This paper experimentally evaluates the interference from two kinds of UWB sources, namely a orthogonal frequency division Multiplex UWB source and an impulse radio UWB source, to a Broadcasting transmission system. The receive power degradations of broadcasting system are presented. From these experimental results, we show that in all practical cases UWB system can coexist 35 m distance in-band broadcasting network.

Joint Subcarriers and Power Allocation with Imperfect Spectrum Sensing for Cognitive D2D Wireless Multicast

  • Chen, Yueyun;Xu, Xiangyun;Lei, Qun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권7호
    • /
    • pp.1533-1546
    • /
    • 2013
  • Wireless multicast is considered as an effective transmission mode for the future mobile social contact services supported by Long Time Evolution (LTE). Though wireless multicast has an excellent resource efficiency, its performance suffers deterioration from the channel condition and wireless resource availability. Cognitive Radio (CR) and Device to Device (D2D) are two solutions to provide potential resource. However, resource allocation for cognitive wireless multicast based on D2D is still a great challenge for LTE social networks. In this paper, a joint sub-carriers and power allocation model based on D2D for general cognitive radio multicast (CR-D2D-MC) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) LTE systems. By opportunistically accessing the licensed spectrum, the maximized capacity for multiple cognitive multicast groups is achieved with the condition of the general scenario of imperfect spectrum sensing, the constrains of interference to primary users (PUs) and an upper-bound power of secondary users (SUs) acting as multicast source nodes. Furthermore, the fairness for multicast groups or unicast terminals is guaranteed by setting a lower-bound number of the subcarriers allocated to cognitive multicast groups. Lagrange duality algorithm is adopted to obtain the optimal solution to the proposed CR-D2D-MC model. The simulation results show that the proposed algorithm improves the performance of cognitive multicast groups and achieves a good balance between capacity and fairness.

The Design of a Ultra-Low Power RF Wakeup Sensor for Wireless Sensor Networks

  • Lee, Sang Hoon;Bae, Yong Soo;Choi, Lynn
    • Journal of Communications and Networks
    • /
    • 제18권2호
    • /
    • pp.201-209
    • /
    • 2016
  • In wireless sensor networks (WSNs) duty cycling has been an imperative choice to reduce idle listening but it introduces sleep delay. Thus, the conventional WSN medium access control protocols are bound by the energy-latency tradeoff. To break through the tradeoff, we propose a radio wave sensor called radio frequency (RF) wakeup sensor that is dedicated to sense the presence of a RF signal. The distinctive feature of our design is that the RF wakeup sensor can provide the same sensitivity but with two orders of magnitude less energy than the underlying RF module. With RF wakeup sensor a sensor node no longer requires duty cycling. Instead, it can maintain a sleep state until its RF wakeup sensor detects a communication signal. According to our analysis, the response time of the RF wakeup sensor is much shorter than the minimum transmission time of a typical communication module. Therefore, we apply duty cycling to the RF wakeup sensor to further reduce the energy consumption without performance degradation. We evaluate the circuital characteristics of our RF wakeup sensor design by using Advanced Design System 2009 simulator. The results show that RF wakeup sensor allows a sensor node to completely turn off their communication module by performing the around-the-clock carrier sensing while it consumes only 0.07% energy of an idle communication module.

Joint Transmission Slot Assignment, FSO Links Allocation and Power Control for Hybrid RF/FSO Wireless Mesh Networks

  • Zhao, Yan;Shi, Wenxiao;Shi, Hanyang;Liu, Wei;Wu, Pengxia
    • Current Optics and Photonics
    • /
    • 제1권4호
    • /
    • pp.325-335
    • /
    • 2017
  • Hybrid radio frequency/free space optical (RF/FSO) wireless mesh networks have attracted increasing attention for they can overcome the limitations of RF and FSO communications and significantly increase the throughput of wireless mesh networks (WMNs). In this article, a resource assignment optimization scheme is proposed for hybrid RF/FSO wireless mesh networks. The optimization framework is proposed for the objective of maximizing throughput of overall hybrid networks through joint transmission slot assignment, FSO links allocation and power control with the consideration of the fading nature of RF and FSO links. The scheme is formulated as an instance of mixed integer linear program (MILP) and the optimal solutions are provided using CPLEX and Gurobi optimizers. How to choose the appropriate optimizer is discussed by comparing their performance. Numerous simulations are done to demonstrate that the performance of our optimization scheme is much better than the current case of having the same topology.

Efficiency evaluation and characteristics of receiver coil under different inserted resonance coils in wireless power charging system for MAGLEV

  • Chung, Yoon Do;Jeon, Haeryong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권1호
    • /
    • pp.23-27
    • /
    • 2018
  • As the wireless power transfer (WPT) technology based on strongly resonance coupled method realizes large power charging without any wires through the air, there are advantages compared with the wired counterparts, such as convenient, safety and fearless transmission of power. From this reason, the WPT systems have started to be applied to the wireless charging for various power applications such as train, underwater ship, electric vehicle. This study aims for the effect and characteristics of different inserted resonance coil between Tx and Rx coils for charging system of superconducting magnetic levitation (MAGLEV) train. The transfer efficiency and effect are evaluated with helix type, rectangular type copper resonance coil, and HTS resonance coil under bulb and HTS magnet load, respectively. The input power is adapted with radio frequency (RF) power of 370 kHz below 500 W.

Communications Protocol Used in the Wireless Token Rings for Bird-to-Bird

  • Nakajima, Isao;Juzoji, Hiroshi;Ozaki, Kiyoaki;Nakamura, Noboru
    • Journal of Multimedia Information System
    • /
    • 제5권3호
    • /
    • pp.163-170
    • /
    • 2018
  • We developed a multicast communication packet radio protocol using a time-sharing tablet system ("wireless token ring") to achieve the efficient exchange of files among packet radio terminals attached to swans. This paper provides an overview of the system and the protocol of the packet communications. The packet device forming the main part of the transceiver developed is the Texas Instruments CC2500. This device consists of one call-up channel and one data transmission channel and could improve error frame correction using FEC (forward error correction) with 34.8 kbps MSK and receiving power of at least -64 dBm (output 1 dBm at distance of 200 m using 3 dBi antenna). A time-sharing framework was determined for the wireless token ring using call sign ordinals to prevent transmission right loss. Tests using eight stations showed that resend requests with the ARQ (automatic repeat request) system are more frequent for a receiving power supply of -62 dBm or less. A wireless token ring system with fixed transmission times is more effective. This communication protocol is useful in cases in which frequency resources are limited; the energy consumed is not dependent on the transmission environment (preset transmission times); multiple terminals are concentrated in a small area; and information (position data and vital data) is shared among terminals under circumstances in which direct communication between a terminal and the center is not possible. The method allows epidemiological predictions of avian influenza infection routes based on vital data and relationships among individual birds based on the network topology recorded by individual terminals. This communication protocol is also expected to have applications in the formation of multiple in vivo micromachines or terminals that are inserted into living organisms.

다중반송파 적응변조를 이용한 광대역 무선전송시스템의 성능분석 (Performance Analysis of the Wide-band Radio Transmission System using a Multi-carrier Adaptive Modulation Schemes)

  • 임승주;강민구;천현수;강창언
    • 한국정보통신학회논문지
    • /
    • 제5권4호
    • /
    • pp.621-629
    • /
    • 2001
  • 본 논문에서는 다중 반송파 적응 변조기술을 적용한 무선 데이터 전송 시스템을 제안하고, 성능을 분석한다. 일반적인 직교 주파수 분할 다중화 (OFDM : orthogonal frequency division multiplexing) 방식이 모든 부반송파를 통해 전송되는 신호의 정보량을 같게 설정하는 것과 달리 제안된 다중 반송파 적응 변조 시스템은 채널의 상태 및 주어진 에러 확률에 따라 부반송파를 통해 전송되는 신호의 정보량을 다르게 한다. 이에 따라 원하는 품질의 전송상태를 유지하면서도 데이터의 전송률을 최대화하거나 데이터의 전송률과 전송 상태를 고정하면서 최소의 소비전력으로 전송할 수 있게된다.

  • PDF