• Title/Summary/Keyword: Radio Frequency Wireless Power Transmission

Search Result 66, Processing Time 0.023 seconds

Comparative Study on the Power Transfer Efficiency of Magnetic Resonance and Radio Frequency Wireless Power Transmission

  • Kim, Ye-Chan;Choi, Bo-Hee;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.232-234
    • /
    • 2016
  • In this paper, the power transfer efficiencies (PTEs) of magnetic resonance (MR) wireless power transmission (WPT) and radio frequency (RF) WPT are compared as a function of the distances between resonators (or antennas). The PTE of the C-loaded loop resonators during MR WPT was theoretically calculated and simulated at 6.78MHz, showing good agreement. The PTE of the patch antennas, whose area is the same as the C-loaded loop resonator during MR WPT, was theoretically calculated using the Friis equation and the equation by N. Shinohara and simulated at 5.8 GHz. The three results from the Friis equation, the equation by N. Shinohara, and from a full wave simulation are in strong agreement. The PTEs, when using the same size resonators and antennas are compared by considering the distance between the receiver and transmitter. The compared results show that the MR WPT PTE is higher than that of the RF WPT PTE when the distance (r) between the resonators (or antennas) is shorter. However, the RF WPT PTE is much higher than that of the MR WPT PTE when the distance (r) between the resonators (or antennas) is longer since the RF WPT PTE is proportional to $r^{-2}$ while the MR WPT PTE is proportional to $r^{-6}$.

Wireless Power Transmission between Two Metamaterial-Inspired Loops at 300 MHz

  • Kim, Gun-Young;Jung, Youn-Kwon;Lee, Bom-Son
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.219-223
    • /
    • 2010
  • Based on a provided closed-form wireless power transmission (WPT) efficiency formula, which may be used for any value of load, we have analyzed the WPT efficiencies between two metamaterial-inspired loop antennas in various aspects. Due to the modeling based on low frequency circuit theory, the provided formula at the center resonant frequency has been found to be accurate until when the distance between the two loop antennas increases to 15 cm (about $\lambda_0/6$ at 300 MHz). When the two loops get closer, the resonant frequency has been found to split into two in theory, simulations, and measurements. The EM-simulated and measured efficiencies at new resonant frequencies are 60.9 % and 46.3 %, respectively, at d=15 cm. With two extra rings around the loops, the maximum efficiency is enhanced to 93.7 % at d=15 cm. The effect of the additional two rings is about 30 %.

Wireless Power Transmission using Electromagnetic Inductive Coupling and LC Resonant (자기유도방식과 LC공진을 이용한 무선전력전송기기)

  • Lee, Seung-Hwan;Kimm, Hyoen-Min;Kim, Hee-Je;Kim, Su-Weon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.349-354
    • /
    • 2013
  • Wireless power transmission introduced by Tesla has instrumented by many scientists of the world. This technique first was utilized as wireless communications such as radio in long range transmission. And contactless transmission using inductive property was used on white goods. In 2007, MIT' lab introduced that new wireless power transmission by magnetic resonance which has about 50% efficiency and 2M transmission distances, it was a chance to refocus a new possibility of wireless power transmission. In this paper, using LC coupling compensate the short distances of contactless transmission, this simple method could transmit about 30cm distances. Using this approach, it can be solved the short transmission distances, a drawback of Electromagnetic inductive coupling method.

Study on Compatibility between WPT Device at ISM band and Radio Modem (ISM 대역의 WPT 기기와 무선 모뎀의 공존 방안 연구)

  • Kim, SeungNam;Lee, Ilkyoo;Min, Kyoungil
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.47-52
    • /
    • 2014
  • Recently, the interest of Wireless Power Transmission(WPT) has been increased for Mobile device application. It is necessary to analyze interference between wireless devices for the efficient use of frequency resource. The Minimum Coupling Loss(MCL) method and the Monte Carlo(MC) method were used for the interference analysis. In this paper, the impact of the 3rd order harmonics of the wireless charger for Cellular Phone on the existing Radio Modem was analyzed. As a result, the separation distance and the allowable number of interferer on the basis of service radius were obtained to protect the Radio Modem from the wireless charger for Cellular Phone.

Magnetic Resonance-Based Wireless Power Transmission through Concrete Structures

  • Kim, Ji-Min;Han, Minseok;Sohn, Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.104-110
    • /
    • 2015
  • As civil infrastructures continue to deteriorate, the demand for structural health monitoring (SHM) has increased. Despite its outstanding capability for damage identification, many conventional SHM techniques are restricted to huge structures because of their wired system for data and power transmission. Although wireless data transmission using radio-frequency techniques has emerged vis-$\grave{a}$-vis wireless sensors in SHM, the power supply issue is still unsolved. Normal batteries cannot support civil infrastructure for no longer than a few decades. In this study, we develop a magnetic resonance-based wireless power transmission system, and its performance is validated in three different mediums: air, unreinforced concrete, and reinforced concrete. The effect of concrete and steel rebars is analyzed.

Ultra-Low Power MICS RF Transceiver Design for Wireless Sensor Network (WSN 을 위한 초저전력 MICS RF 송수신기 기술 개요 및 설계 기법)

  • Gyu-won Kim;Yu-jung Kim;Junghwan Han
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • This paper discusses the design of bio-implanted ultra-low-power MICS RF transceivers for wireless sensor networks. The 400 MHz MICS standard was considered for the implementation of the WBAN wireless sensor system, indirectly minimizing radio propagation losses in the human body and the inference with surrounding networks. This paper includes link budget, various transmission and reception architectures for a system design and ultra-low power transceiver circuit techniques for the implementation of RF transceivers that meet MICS standards.

Joint Resource Allocation Scheme for OFDM Wireless-Powered Cooperative Communication Networks

  • Liang, Guangjun;Zhu, Qi;Xin, Jianfang;Pan, Ziyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1357-1372
    • /
    • 2017
  • Energy harvesting techniques, particularly radio frequency energy harvesting (RF-EH) techniques, which are known to provide feasible solutions to enhance the performance of energy constrained wireless communication systems, have gained increasing attention. In this paper, we consider a wireless-powered cooperative communication network (WPCCN) for transferring energy in the downlink and forwarding signals in the uplink. The objective is to maximize the average transmission rate of the system, subject to the total network power constraint. We formulate such a problem as a form of wireless energy transmission based on resource allocation that searches for the joint subcarrier pairing and the time and power allocation, and this can be solved by using a dual approach. Simulation results show that the proposed joint optimal scheme can efficiently improve system performance with an increase in the number of subcarriers and relays.

The Measurement and Analysis of Radio Characteristic of 424 MHz Short Range Wireless Frequency (424 MHz 소출력 무선주파수 전파특성 측정 및 분석)

  • Lim, Yong-Hun;Choi, Hyo-Yul;O, Kyu-Whan;Lee, Beom-Seok;Hyun, Duck-Hwa
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.437-442
    • /
    • 2005
  • This paper deals with the measurement and analysis of radio characteristic of 424 MHz for using the automation of transmission and supply of electric power, ana automatic meter reading(AMR). Normally radio propagation characteristic is the base of system design, performance evaluation and choice of position of the base station in wireless communication. It is the most accurate way to design a base station through practical measurements, but it costs much time, money and engineers. So, we developed 424 MHz short range wave propagation model for AMR service.

  • PDF

Real-time implementation of distributed beamforming for simultaneous wireless information and power transfer in interference channels

  • Hong, Yong-Gi;Hwang, SeongJun;Seo, Jiho;Lee, Jonghyeok;Park, Jaehyun
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.389-399
    • /
    • 2021
  • In this paper, we propose one-bit feedback-based distributed beamforming (DBF) techniques for simultaneous wireless information and power transfer in interference channels where the information transfer and power transfer networks coexist in the same frequency spectrum band. In a power transfer network, multiple distributed energy transmission nodes transmit their energy signals to a single energy receiving node capable of harvesting wireless radio frequency energy. Here, by considering the Internet-of-Things sensor network, the energy harvesting/information decoding receivers (ERx/IRx) can report their status (which may include the received signal strength, interference, and channel state information) through one-bit feedback channels. To maximize the amount of energy transferred to the ERx and simultaneously minimize the interference to the IRx, we developed a DBF technique based on one-bit feedback from the ERx/IRx without sharing the information among distributed transmit nodes. Finally, the proposed DBF algorithm in the interference channel is verified through the simulations and also implemented in real time by using GNU radio and universal software radio peripheral.

Increasing Throughput in Energy-Based Opportunistic Spectrum Access Energy Harvesting Cognitive Radio Networks

  • Yao, Yuanyuan;Yin, Changchuan;Song, Xiaoshi;Beaulieu, Norman C.
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.340-350
    • /
    • 2016
  • The performance of large-scale cognitive radio (CR) networks with secondary users sustained by opportunistically harvesting radio-frequency (RF) energy from nearby primary transmissions is investigated. Using an advanced RF energy harvester, a secondary user is assumed to be able to collect ambient primary RF energy as long as it lies inside the harvesting zone of an active primary transmitter (PT). A variable power (VP) transmission mode is proposed, and an energy-based opportunistic spectrum access (OSA) strategy is considered, under which a secondary transmitter (ST) is allowed to transmit only if its harvested energy is larger than a predefined transmission threshold and it is outside the guard zones of all active PTs. The transmission probability of the STs is derived. The outage probabilities and the throughputs of the primary and the secondary networks, respectively, are characterized. Compared with prior work, the throughput can be increased by as much as 29%. The energy-based OSA strategy can be generally applied to a non-CR setup, where distributed power beacons (PBs) are deployed to power coexisting wireless signal transmitters (WSTs) in a wireless powered sensor network.