• Title/Summary/Keyword: Radio Frequency Interference

Search Result 461, Processing Time 0.026 seconds

An Efficient Power Processing Method for Cognitive Radio (Cognitive Radio에 적합한 효율적인 전력 처리기법)

  • Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.43-48
    • /
    • 2008
  • In this paper, we discuss the transmit power of user in Cognitive Radio environment. Transmit power of user should be operated in order not to give a bad effect to PU(Primary user) and this power can be considered as SINR(Signal to Interference and Noise Ratio) measured in PU. Exact spectrum sensing is required to see which is the vacant frequency. And this spectrum sensing should be operated repeatedly within certain time because the vacant frequency is time-varying. In this paper, we reduce the existing defect by using orthogonal parameter and show the sensing operation is possible if SINR of PU can be guaranteed.

  • PDF

Self-Interference Cancellation and Turbo Equalizer Design for the Single-band Full Duplex System using Single Antenna (단일 안테나를 사용하는 단일대역 전이중 통신을 위한 자기간섭신호제거와 터보 등화기 설계)

  • Choi, Jinkyu;An, Changyoung;Ryu, Heung-Gyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.7-17
    • /
    • 2015
  • In this paper, we propose a single antenna SSD(simultaneous single band duplex) system using turbo equalizer. The proposed system communicates simultaneously on single band. That is the proposed system is full-duplex system. The proposed system uses balanced feed network circuit to improve isolation in single antenna structure. Also, the proposed system uses RF(radio frequency) cancellation and digital cancellation to cancel self-interference. Additionally, the proposed system uses turbo equalizer to equalize ISI(inter-symbol interference) by harsh multipath fading and to collect bit errors by residual self-interference signals. By using turbo equalizer, the proposed system guarantees QoS(quality of service). In this paper, we uses Simulink simulation program to analyze performance of the proposed system. The simulation results confirm that proposed system can communicate simultaneously by using balanced feed network, RF cancellation, digital cancellation and turbo equalizer in harsh multipath channel on single band.

A Study on the Interference Effects between UWB and T-DMB Systems (UWB 시스템과 T-DMB 시스템간의 간섭 영향에 관한 연구)

  • Koo, Sung-Wan;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.82-87
    • /
    • 2009
  • Recently, a great variety of radio services are provided and interference problem between radio systems is being watched remarkably. Therefore, a study of interference between radio systems is needed. In this paper, compatibility between Ultra Wideband (UWB) and Terestrial Digital Multi-media Broadcasting (T-DMB) is analyzed and then distance between them is computed. UWB systems have a very broad frequency characteristic. A big advantage is to share frequency that is already allocated to other systems. T-DMB is a good point that while L-Band is already used for DAB, T_DMB is free of charge. AT-DMB (Advanced T-DMB) is being standardized recently. The result which is analyzed for the interference effects between UWB and T-DMB Systems is 10 [dB], which is value calculated by C/(N0+I), at 80 [m] and then the value is saturated at 150 [m].

  • PDF

Measurement and Analysis of 433 MHz Radio Wave for Drone Operation (드론 운용을 위한 433 MHz 전파 측정 및 분석)

  • Seong-Real Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.209-213
    • /
    • 2023
  • Currently, 2.4 GHz and 5 GHz bands are used as frequencies for drone operation. In December 2019, the Ministry of Science and ICT newly allocated the 433 MHz band for the invisible long-distance operation of drones. However, since the 433 MHz band is the same as the previously allocated frequency band for amateur radio communication, interference cannot be avoided. Therefore, as a prerequisite for the development of a drone operation system based on the 433 MHz band, interference avoidance technology for this frequency band must be developed and applied. In this paper, we report the results of measurement and analysis of 433 MHz band signals necessary for the development of interference avoidance and reduction technologies for 433 MHz signals. The measurement and analysis of the 433 MHz band signal are performed through the spectrum measured at 5-minute intervals at three locations. Since the measurements and analyzes performed in this study considered spatial characteristics, temporal characteristics, and traffic characteristics, it is considered to be the basic data necessary for the development of interference avoidance technology in the 433 MHz band.

Redesigning Radio Networks Considering Frequency Demands and Frequency Reassignment Cost (주파수 수요와 주파수 재할당 비용을 고려한 무선통신 네트워크 재설계)

  • Han, Junghee
    • Journal of Information Technology Services
    • /
    • v.10 no.1
    • /
    • pp.117-133
    • /
    • 2011
  • In this paper, we present a frequency reassignment problem (FRP) arising from the reconfiguration of radio networks such as adding new base stations (BSs) and changing the number of frequencies assigned to BSs. For this problem, we develop an integer programming (IP) model that minimizes the sum of frequency reassignment cost and the cost for unsatisfied frequency demands, while avoiding interference among frequencies. To obtain tight lower bounds, we develop some valid inequalities and devise an objective function relaxation scheme. Also, we develop a simple but efficient heuristic procedure to solve large size problems. Computational results show that the developed valid inequalities are effective for improving lower bounds. Also, the proposed tabu search heuristic finds tight upper bounds with average optimality gap of 2.3%.

A Study on Interference Analysis between FM Broadcasting Service and ILS Localizer (FM 방송서비스와 ILS localizer사이의 간섭분석에 관한 연구)

  • Kim, Jin-Young;Kim, Eun-Cheol;Yang, Jae-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.3
    • /
    • pp.7-18
    • /
    • 2008
  • Radio systems decline in the system performances when one system is interfered from the other system. System parameters, which are operating frequency, transmit power, and so on, need to be determined in order that there is no interference between radio systems. We investigate the interference from the sound broadcasting service in the band 87.5-108 MHz to the ILS localizer, one of the aeronautical services, in the band of 108-112 MHz. The results are compared with the interference criteria. And then several system parameters, which are frequency, transmit power, and location, are determined in order to avoid the interference from the FM sound broadcasting service which occupies the frequency band near the band of the aeronautical services. The results of this paper can be applied to set up system parameters of the ILS localizer so that system performance can be maximized. Besides, the result of this paper can be applied for determining spectrum management policy.

Comparison of two methodologies on spectrum sharing information for unlicensed use in the 6-GHz band

  • Um, Jungsun;Kim, Bongsu;Kim, Igor;Park, Seungkeun
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.531-542
    • /
    • 2022
  • With the increasing demand for unlicensed spectrum, several regulators have been opening up the 6-GHz band for unlicensed use while ensuring compliance with the technical requirement to avoid harmful interference in the existing primary services (PSs). In this paper, we present two methodologies, a channel-based method and a frequency-based method, which are applicable to a frequency coordination system that calculates the permissible transmit power in the channels or frequencies available to a secondary service (SS). In addition, we have demonstrated that the available transmit power of an SS can be maximized by adjusting the power allocation of the assigned resource units under the condition that the channel of the SS is partially overlapped with that of the PS. Based on the analysis results, it is suggested that it would be better to utilize the two methods selectively according to the operating channel conditions of the PS and the SS.

Development of Analysis Program for Geographical Separation of Radio Navigation Aids (항행안전무선시설의 지리적분리간격 분석 프로그램 개발)

  • Choi, Jae-Myeong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • Radio navigation aids are very important elements to provide information necessary for safe navigation using radio waves. Recently, the number of radio equipment using radio waves is increasing, and the air frequency interference by adjacent channels is very high. In addition, the use of irregular jamming that threatening radio navigation aids and satellite navigation system frequency is rapidly increasing. Therefore, it is urgent to ensure the safety of air waves. In this paper, we investigated the characteristics and frequency of the domestic navigation system. And we were analyzed the geographical separation standard for implementation of analysis program. Also, we implemented a program for the geographical separation distance analysis that applying international standards and recommended practices.

Optimization of Cooperative Sensing in Interference-Aware Cognitive Radio Networks over Imperfect Reporting Channel

  • Kan, Changju;Wu, Qihui;Song, Fei;Ding, Guoru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1208-1222
    • /
    • 2014
  • Due to the low utilization and scarcity of frequency spectrum in current spectrum allocation methodology, cognitive radio networks (CRNs) have been proposed as a promising method to solve the problem, of which spectrum sensing is an important technology to utilize the precious spectrum resources. In order to protect the primary user from being interfered, most of the related works focus only on the restriction of the missed detection probability, which may causes over-protection of the primary user. Thus the interference probability is defined and the interference-aware sensing model is introduced in this paper. The interference-aware sensing model takes the spatial conditions into consideration, and can further improve the network performance with good spectrum reuse opportunity. Meanwhile, as so many fading factors affect the spectrum channel, errors are inevitably exist in the reporting channel in cooperative sensing, which is improper to be ignored. Motivated by the above, in this paper, we study the throughput tradeoff for interference-aware cognitive radio networks over imperfect reporting channel. For the cooperative spectrum sensing, the K-out-of-N fusion rule is used. By jointly optimizing the sensing time and the parameter K value, the maximum throughput can be achieved. Theoretical analysis is given to prove the feasibility of the optimization and computer simulations also shows that the maximum throughput can be achieved when the sensing time and the parameter of K value are both optimized.

A Study on Radio Interference Analysis for Wireless LAN (무선랜을 위한 전파 간섭 분석 연구)

  • Kim, Ji-Hee;Cho, Jung Hyun;Cho, Dae-Jea;Son, Dong-Cheul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.117-122
    • /
    • 2017
  • In a wireless communication system, increasing the channel capacity with a limited frequency is a problem in all frequency bands. Increasing the frequency bandwidth and increasing the output can increase the channel capacity, but sometimes the communication is not possible due to interference noise. If the radio frequency allocation is set to world standardization such as WRC or ITU-R, each country has strict control over regulations. This is because one wireless communication system should not affect other systems. We present the results of a study on scenarios and analysis of radio waves to be installed inside and outside the aircraft without interfering with the wireless LAN.