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In this paper, we present a frequency reassignment problem (FRP) arising from the reconfiguration of radio 

networks such as adding new base stations (BSs) and changing the number of frequencies assigned to BSs. For 

this problem, we develop an integer programming (IP) model that minimizes the sum of frequency reassignment cost 

and the cost for unsatisfied frequency demands, while avoiding interference among frequencies. To obtain tight lower 

bounds, we develop some valid inequalities and devise an objective function relaxation scheme. Also, we develop a 
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1. Introduction

This paper deals with a frequency reassignment 

problem (FRP) arising from the reconfiguration of 

radio access networks such as installing new base 

stations (BSs) and adjusting the number of radio 

frequency channels (in short, frequencies) allocated 

to BSs to expand service area or to resolve hot 

spots. Suppose that there exists a BS A having b0 

frequencies, and the frequency demand for BS A 

has increased to b1 (> b0). Then, we seek to assign 

to BS A b1-b0 new frequencies incurring minimum 

interference. If we cannot find b1-b0 new frequen-

cies to assign to BS A not incurring interference, 

we may have two options. First, we assign only 

b2-b0 new frequencies to BS A, where b0 < b2 < 

b1, not incurring any interference, when penalty 

cost for b1-b2 unsatisfied frequency demands 

should be considered. Alternatively, we may reas-

sign frequencies for some BSs to add b1-b0 new 

frequencies not incurring interference to BS A, 

when frequency reassignment cost should be con-

sidered. Reassigning frequencies may degrade ser-

vice quality. If a frequency f assigned to BS A be-

comes unavailable in the BS A due to frequency 

reassignment, a mobile station (MS) using the fre-

quency f can be handed over to one of the adjacent 

BSs. If the MS cannot find any unoccupied fre-

quency from the adjacent BSs, the call associated 

with the MS can be terminated. Even if the MS 

finds an unoccupied frequency from adjacent BSs, 

the signal quality of new frequency may not be as 

good as the original one. Thus, it is necessary to 

minimize the number of frequencies dropped or re-

placed with other ones when redesigning a radio 

network. In this paper, we address a frequency re-

assignment problem that finds an interference free 

frequency assignment to BSs incurring minimum 

total cost consisting of two cost components: pen-

alty cost not satisfying frequency demands of BSs 

and frequency reassignment cost. The fact that 

commercial radio networks are almost never static 

motivates this study. A mobile operator typically 

redesigns/reassigns parts of the network perhaps 

every three to six months when the network is in 

high growth state. However, unfortunately, we of-

ten find notices and complaints on unavailability 

of radio network in some areas during the deploy-

ment of radio network redesign (see references 19 

and 20). We expect that the proposed integer pro-

gramming approach can be a viable choice for op-

erators that seek to minimize possible service fail-

ure or degrade that may occur while redesigning 

radio networks.

There exist numerous studies on generic fre-

quency assignment problem (FAP). However, there 

are few to deal with a frequency reassignment 

problem but the work by Han (2007). Han (2007) 

addressed a multi-period frequency reassignment 

problem for code division multiple access (CDMA) 

networks, where exactly one pseudo noise (PN) 

code is assigned to each BS. Also, Han (2007) de-

veloped a simple two-phase heuristic algorithm. 

First, it finds a PN code assignment pattern for all 

BSs using the branch-and-bound procedure con-

sidering both PN code reassignment cost and in-

terference cost, from which a set of BSs to change 

PN codes is determined. Then, it determines the 

time periods to reassign PN codes for the BSs se-

lected in the first phase considering interference 

cost during PN code reassignment process. Below, 

some of the distinguished research results on ge-

neric FAPs are summarized. The first model of ge-

neric FAP, referred to as Min-FAP, is to minimize 

the total number of frequencies to satisfy the fre-

quency demands for all BSs while avoiding inter-
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ference. This type of FAP was dealt by Hale (1980), 

Gamst and Rave (1982), Hao et al. (1990) and Sung 

and Wong (1997). Hale (1980) showed that this 

problem can be expressed as a graph coloring pro-

blem. Another type of FAP, referred to as Max- 

FAP, is to maximize the total number of frequen-

cies assigned to BSs, while avoiding interference 

among frequencies. Gamst and Rave (1982), Mar-

thar and Mattfeldt (1993), Chang and Kim (1997), 

Sung and Wong (1997) and Tiourine et al. (2000) 

dealt with the Max-FAP. Hao et al. (1990) devel-

oped a tabu search algorithm to solve a FAP that 

minimizes the total interference among frequencies, 

referred to as MI(Minimum Interference)-FAP. An 

important feature of Hao et al. (1990) is the change 

of cost table during the implementation of tabu 

search. For the MI-FAP, Tiourine et al. (2000) de-

veloped a heuristic algorithm and compared the 

performance with a tabu search algorithm by Hao 

et al. (1990). Also, Tiourine et al. (2000) obtained 

tight lower bounds by reformulation, and found an 

optimal solution using the branch-and-bound and 

preprocessing. Montemanni et al. (2002) developed 

an Ant Colony System algorithm for minimum 

span assignment problem (MS-FAP). Avenali et 

al. (2002) devised a new integer programming ap-

proach generating columns and rows as needed, 

which was successful to find optimal solutions to 

larger problems of MS-FAP. Recently, Graham et 

al. (2008) developed two types of algorithm; simu-

lated annealing algorithm and a new Ant Colony 

System algorithm that can efficiently handle non-

binary constraints expressing, for example, sig-

nal-to-interference ratio (SIR) as well as binary 

constraints. Besides, quite many research papers 

on generic FAP are well summarized in Aardal et 

al. (2007).

The remainder of this paper is organized as 

follows. In Section 2, we develop an integer pro-

gramming formulation. In Section 3, we devise 

some valid inequalities along with an objective 

function relaxation to obtain tight lower bounds. 

In Section 4, we consider a simple heuristic proce-

dure based on objective function relaxation, and 

develop an effective heuristic procedure for dealing 

with large size problems. Computational results are 

provided in Section 5, and Section 6 concludes this 

paper. 

2. Integer Programming Model

Let N be the set of nodes (BSs), and let F be 

the set of frequencies. Also, let F(i) ⊆ F be the 

set of frequencies that are currently assigned to 

node i ⋵ N, and let b(i) be the updated frequency 
demands of node i ⋵ N. If |F(i)| = 0 and b(i) > 
0, we consider that new node i ⋵ N having fre-
quency demands b(i) should be installed. Define E 

= {i, j (> i) ⋵ N: r(i, j) > 0}, where r(i, j) denotes 

the minimum distance to avoid interference be-

tween two frequencies assigned to nodes i and j 

(> i) ⋵ N, respectively. Let xif = 1 if frequency 
f ⋵ F is assigned to node i ⋵ N, and 0 otherwise. 

Let yik = 1 if the number of frequencies dropped 

from F(i) is equal to k (= 1, …, |F(i)|) for node 

i ⋵ N, and 0 otherwise. If yik = 1, frequency re-

assignment cost pik arises. Obviously, pik should 

increase as k denoting the number of frequencies 

reassigned (or dropped) increases for i ⋵ N. Let 
uil = 1 if the unsatisfied frequency demands of node 

i ⋵ N is equal to l (= 1, …, b(i)), and 0 otherwise. 

If uil = 1, penalty cost qil for not assigning l fre-

quencies to node i ⋵ N arises. Penalty cost qil 
should also increase as l increases for i ⋵ N. 
Estimating cost factors p  and q  exactly can be 

cumbersome in practice. Rather than trying to find 
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out optimal trade-offs between cost factors p  and 

q, it would be realistic to focus on one cost factor. 

When p  >> q, we seek to minimize the frequency 

reassignments first. If there are alternatives having 

the same reassignment cost, we prefer the one that 

meets the frequency demands most. While, if p << 

q, we try to meet the frequency demands first. In 

case of tie, we prefer the one that minimizes the 

change of current frequency assignments. Using 

the notations defined above, we can formulate the 

frequency reassignment problem as a linear integer 

programming (IP) model as follows.

FRP：Minimize ∑i ⋵ N ∑k ≤ |F(i)| pik yik  

      +∑i ⋵ N ∑l ≤ b(i) qil uil      (1)

Subject to

∑f ⋵ F(i) xif+∑k ≤ |F(i)| k yik = |F(i)|

i ⋵ N,      (2)

∑k ≤ |F(i)| yik ≤ 1 i ⋵ N,        (3)
∑f ⋵ F xif + ∑l ≤ b(i) l uil = b(i)

i ⋵ N,      (4)

∑l ≤ b(i) uil ≤ 1 i ⋵ N,      (5)

xif + xjg ≤ 1 (i, j) ⋵ E, f, g ⋵ F: 
|f-g| < r(i, j),    (6)

all the variables are binary.

Objective function (1) minimizes the sum of cost 

for not satisfying the frequency demands and fre-

quency reassignment cost. Constraints (2) and (3) 

express the number of frequencies dropped from 

the set of original frequencies F(i) for each node 

i ⋵ N. Constraints (4) and (5) express unsatisfied 
frequency demands for each node i ⋵ N. Constra-
int (6) prohibits interference among frequencies.

Remark 1：The problem FRP is NP-hard since 

it becomes Max-FAP (see Aardal et al., 2001) by 

letting pik = 0 for all i ⋵ N and k ⋵ F(i), and 

qil = 1 for all i ⋵ N and l ⋵ b(i). 

3. Lower Bounds

3.1 Valid Inequalities

Remark 2：If |F(i)| > b(i) for some i ⋵ N, any 
feasible solution satisfies that

∑k = |F(i)|-b(i),…,|F(i)| yik = 1. (7)

Thus, we replace constraint (3) by equation (7) 

for all i ⋵ N satisfying that |F(i)| > b(i). Also, 
if |F(i)| = b(i) for some i ⋵ N, the following in-

equality is valid

∑k ≤ |F(i)| yik ≥ xif     f ⋵ F\F(i)    (8)

Proposition 1：For i ⋵ N satisfying that |F(i)| 
≥ b(i), the following inequality is valid

 ∑k = |F(i)|-b(i), …, |F(i)| k yik ≥ ∑l ≤ b(i) l uil 

+|F(i)|-b(i) l ≤ b(i).         (9)

Proof：If uil = 0 for all l ≤ b(i), inequality (9) be-

comes ∑k = |F(i)|-b(i),…, |F(i)| k yik ≥ |F(i)|-b(i), which 

is obviously valid due to (7). Thus, assuming that 

uil = 1 for some l ≤ b(i), we see that at least l 

+|F(i)|-b(i) frequencies should be dropped from 

F(i). This completes the proof. 　

Below, we consider some valid inequalities based 

on the clique subgraph in G(N, E). For (i, j) ⋵ 
E, f and g ⋵ F satisfying that |f-g| < r(i, j), consid-
er j' ⋵ N \{i, j} and g' ⋵ F satisfying that |f - 
g'| < r(i, j') and |g-g'| < r(j, j'). Then, by adding 

xjg' to the left- hand side of constraint (5), we ob-

tain
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 xif + xjg + xjg' ≤ 1.     (10)

As an extension of inequality (10), we consider 

the following inequality. 

Remark 3 (Fischetti et al., 2000)：For a clique in-

ducing node set C ⊆ N, the following inequality 

is valid if |f(i) - f(j)| < r(i, j) for all i and j (> i) 

⋵ C

∑i ⋵ C xi,f(i) ≤ 1,     (11)

where f(i) denotes the frequency assigned to 

node i ⋵ C. Inequality of type (11) was first inves-
tigated by Padberg (1973) for solving a set packing 

problem, and was used by Fischetti et al. (2000) 

for solving the Max-FAP in a branch-and-cut 

framework. Below, we consider lifting (11). 　

Proposition 2：For a clique inducing node set C 

⊆ N, if |F(v)| > b(v) for some v ⋵ C and if |f(i) 
-f(j)| < r(i, j) for all i and j (> i) ⋵ C, the following 
inequality is valid

 ∑i ⋵ C xi,f(i) ≤ ∑k = |F(v)| - b(v),…,|F(v)| yvk.   (12)

Proof：Note that ∑k = |F(v)|-b(v),…,|F(v)| yvk = 1 in any 

feasible solution to FRP since |F(v)| > b(v). Thus, 

inequality (12) holds true. This completes the proof. 

　
We can separate the inequality (11) by finding 

a maximum-weight clique in an augmented graph 

G(N', E'), where N' = {(i, f) : i ⋵ N and f ⋵ F} 
and E' = {[(i, f), (j, g)]：(i, f), (j, g) ⋵ N', |f - g| 
< r(i, j)}, which is a tremendous task due to the 

size of N' and E' (see Aardal et al., 2001). Unlike 

Fischetti et al. (2000) using a greedy algorithm for 

separating the inequality (11), we consider a two- 

phase procedure. First, we find a maximum clique 

C on a graph G(N, E), which is computationally 

easier than solving a maximum-weight clique pro-

blem over G(N', E') since |N| = |N'|/|F| and |E| 

<< |E'|. Then, we find f(i)'s for all i ⋵ C satisfying 
that ∑i ⋵ C x∘i,f(i) > 1, where (x∘, y∘, u∘) denotes 

an optimal solution to the LP- relaxation of FRP, 

which is equivalent to finding an (optimal) solution 

to a generalized assignment problem (GAP) as 

follows.

GAP：Maximize ∑i ⋵ C ∑f ⋵ F x∘if xif
Subject to

∑f ⋵ F xif = 1 i ⋵ C,
∑f ⋵ F f xif - ∑g ⋵ F g xjg ≤ r(i, j) - 1

i, j (> i) ⋵ C,
∑g ⋵ F g xif - ∑f ⋵ F f xif ≤ r(i, j) - 1

i, j (> i) ⋵ C,
x  is binary.

If θ(GAP) > 1, where θ(P) denotes the optimal 

objective value of formulation P, we see that the 

solution arg{f ⋵ F : xif = 1} for i ⋵ C violates the 
inequality (11). If r(i, j) = 1 for all i and j (> i) 

⋵ C, it is sufficient to find a frequency f ⋵ F sat-
isfying that ∑i ⋵ C x∘if > 1, which is simpler than 

solving the GAP. While, if θ(GAP) ≤ 1, we at-

tempt to solve GAP on a different maximum clique 

inducing node set C' (≠ C). In this paper, we have 

generated as many different clique subgraphs as 

possible with the cardinality of four at the root node 

of the branch-and bound tree. For separating the 

inequality (12), we can also solve the GAP opti-

mally to examine if θ(GAP) > ∑k = |F(v)| - b(v),…,|F(v)| 

yvk for some v ⋵ C.

3.2 Objective Function Relaxation

For each i ⋵ N, if costs pik and qil are stepwise 
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concave non-decreasing functions over k = 1

,…,|F(i)| and l = 1,…, b(i), respectively, we can lin-

earize the cost functions p  and q. Let p' and q' 

be arbitrary cost functions satisfying the property 

of constant return to scale. For example, we can 

set p'i = pi1 (or pi|F(i)|/|F(i)|) and q'i = qi1 (or 

qib(i)/b(i)) for all i ⋵ N. Then, we can convert bina-
ry variables yik and uil associated with the cost 

functions p  and q, respectively, to general integer 

variables yi (≤ |F(i)|) and ui (≤ b(i)) for all i ⋵ 
N. Below, we present an objective function relaxa-

tion (OFR) of formulation FRP. 

OFR：Minimize ∑i ⋵ N p'i yi+∑i ⋵ N q'i ui
Subject to

∑f ⋵ F(i) xif+yi = |F(i)|  i ⋵ N,      (13)
∑f ⋵ F xif+ui = b(i)  i ⋵ N,     (14)

xif + xjg ≤ 1 (i, j) ⋵ E, f, g ⋵ F: 
|f - g| < r(i, j),      (15)

xif ⋵ {0, 1}  i ⋵ N, f ⋵ F,
0 ≤ yi ≤ |F(i)| and integer  i ⋵ N,
0 ≤ ui ≤ b(i) and integer  i ⋵ N.

Remark 4：Due to the equality constraints (13) 

and (14), the objective function of OFR can be ex-

pressed as 

Min{∑i⋵N p'i (|F(i)|-∑f⋵F(i) xif) 
     +∑i⋵N qi(b(i)-∑f⋵F xif)} 
     = ∑i⋵N {p'i|F(i)|+∑i⋵N qib(i)}
     -Max{∑i⋵N ∑f⋵F(i) p'i xif +∑i⋵N ∑f⋵F q'i xif}
     = ∑i⋵N {p'i |F(i)|+∑i⋵N q'i b(i)} 
     -Max{∑i⋵N ∑f⋵F(i) (pi+q'i)xif
     +∑i⋵N ∑f⋵F\F(i) q'i xif}. 

Thus, we can express the formulation OFR as 

OFR2：Maximize ∑i ⋵ N ∑f ⋵ F(i) (p'i+q'i) xif  

       +∑i ⋵ N ∑f ⋵ F\F(i) q'i xif
Subject to 

xif + xjg ≤ 1 (i, j) ⋵ E, f, g ⋵ F: 
|f - g| < r(i, j),       (16)

∑f ⋵ F xif ≤ b(i) i ⋵ N,      (17)

xif ⋵ {0, 1} i ⋵ N, f ⋵ F.  

Note that OFR2 is a maximum-weight clique 

problem with side constraint (17). Now, we consid-

er some proper assumption on the cost functions 

of p and q to derive valid lower bounds by solving 

the OFR (or OFR2). 

Assumption：Suppose that costs pik and qil are 

stepwise concave non-decreasing functions over k 

(= 1,…, |F(i)|) and l (= 1,…, b(i)), respectively, for 

all i ⋵ N. Under this Assumption, we have the 

following results.

Proposition 3：If we set p'i = min{pi1, pi|F(i)|/ 

|F(i)|} and q'i = min{qi1, qib(i)/b(i)} for all i ⋵ N 
at OFR and OFR2, we have that

θ(OFR) = ∑i ⋵ N {p'i |F(i)|+∑i ⋵ N q'i b(i)} 
    - θ(OFR2) ≤ θ(FRP).        (18)

Proof：We show that θ(OFR) ≤ θ(FRP) since the 

relations between θ(OFR) and θ(OFR2) are ob-

vious from Remark 4. For any feasible solution (x*, 

y*, u*) to FRP, we can always derive a feasible sol-

ution (x*, y, u) to OFR by setting yi = ∑k ≤ |F(i)| 

k y*ik and ui = ∑l ≤ b(i) l u
*
il. Also, note that p'i 

× k ≤ pik for all i ⋵ N and k ≤ |F(i)| and that 

q'i × l ≤ qil for all i ⋵ N and l ≤ b(i). Thus, 

for any feasible solution (x*, y*, u*) to FRP with 

objective value θ(FRP), the associated objective 

value θ(OFR) = ∑i ⋵ N {p'i×arg{k = 1, …, |F(i)| : 

∑k ≤ |F(i)| y
*
ik = 1}+q'i×arg{l = 1, …, b(i) : ∑l ≤ b(i) 
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u*il = 1}} provides a lower bound of θ(FRP). This 

completes the proof. 　

Define N' = {i ⋵ N：|F(i)| > b(i)}. If N' ≠ {}, 

we obtain a tighter lower bound of FRP than θ

(OFR). 

Corollary 1：If we set p'i = (pi|F(i)|-pi{|F(i)|-b(i)})/b(i) 

for all i ⋵ N', p'i = min{pi1, pi|F(i)|/|F(i)|} for all 

i ⋵ N\N', and q'i = min{qi1, qib(i)/b(i)} for all i ⋵ 
N at OFR and OFR2, we have that

θ(OFR')+ζ = ∑i⋵N {p'i |F(i)| 
+∑i ⋵ N qib(i)}-θ(OFR2)+ζ ≤ θ(FRP), (19)

where OFR' denotes the OFR set by |F(i)|-b(i) ≤ 

yi ≤ |F(i)| for all i ⋵ N', and where ζ = ∑i ⋵ N' 
{pi|F(i)|-(pi|F(i)|-pi{|F(i)|-b(i)})×|F(i)|/b(i)}. 

Proof：Similar to the proof of Proposition 3, we 

show that θ(OFR')+ζ ≤ θ(FRP). For any feasible 

solution (x*, y*, u*) to FRP, we can always derive 

a feasible solution (x*, y, u) to OFR' by setting yi 

= ∑k ≤ |F(i)| k y
*
ik and ui = ∑l ≤ b(i) l u

*
il. Here, 

note that the y variables of OFR' satisfy that |F(i)| 

-b(i) ≤ yi ≤ |F(i)| for all i ⋵ N' since |F(i)|- 
b(i) ≤ arg{k = 1, …, |F(i)|：∑k ≤ |F(i)| y

*
ik = 1} 

≤ |F(i)| for all i ⋵ N', which is also satisfied by 

equation (7). Note that p'i×k ≤ pik for all i ⋵ N\N' 
and k ≤ |F(i)| and that q'i×l ≤ qil for all i ⋵ N 
and l ≤ b(i). Now, for all i ⋵ N' and k = |F(i)| 
-b(i),…, |F(i)|, we see that 

p'i×k+{pi|F(i)|-(pi|F(i)|-pi{|F(i)|-b(i)})×|F(i)|/b(i)} 

≤ pik 

⇔ (pi|F(i)|-pi{|F(i)|-b(i)})/b(i)×k+{pi|F(i)|×b(i) 

   -(pi|F(i)|-pi{|F(i)|-b(i)})×|F(i)|}/b(i) ≤ pik 

⇔ (pi|F(i)|-pi{|F(i)|-b(i)})×k+pi|F(i)|×b(i)- 

   (pi|F(i)|-pi{|F(i)|-b(i)})×|F(i)| ≤ pik×b(i)

⇔ (pi|F(i)|-pi{|F(i)|-b(i)})×(k-|F(i)|)+pi|F(i)|×b(i)

   ≤ pik × b(i)

⇔ (pi|F(i)|-pi{|F(i)|-b(i)})×(k-|F(i)|)+(pi|F(i)|-pik)×b(i) 

   ≤ 0

⇔ (pi|F(i)|-pi{|F(i)|-b(i)})/b(i) ≥ (pi|F(i)|-pik)/ 

   (|F(i)| - k).      (20)

Note that inequality (20) shows the relationship 

between two slopes from (|F(i)|-b(i), pi{|F(i)|-b(i)}) to 

(|F(i)|, pi|F(i)|) and from (k, pik) to (|F(i)|, pi|F(i)|) for 

any k = |F(i)|-b(i), …, |F(i)|. From the assumption 

of stepwise concave non-decreasing cost function 

pik over k = 1, …, |F(i)| for all i ⋵ N, inequality 
(20) holds true. Thus, for any feasible solution (x*, 

y*, u*) to FRP with θ(FRP), the associated ob-

jective value θ(OFR')+ζ = ∑i ⋵ N\N'{p'i×arg{k = 
1, …, |F(i)|：∑k ≤ |F(i)| y

*
ik = 1}}+∑i ⋵ N{q'i×arg{l 

= 1,…, b(i)：∑l ≤ b(i) u
*
il = 1}}+∑i ⋵ N'{pi|F(i)|-(pi|F(i)| 

-pi{|F(i)|-b(i)})×|F(i)|/b(i)} provides a lower bound of 

θ(FRP). This completes the proof. 　

Remark 5：Note that the lower bound (19) is al-

ways greater than or equal to the lower bound (18). 

This is easily verified by comparing the cost p's 

for each k = |F(i)|-b(i), …, |F(i)| in both cases 1 

and 2 of [Figure 1]. That is, p's on line (b) repre-

senting the cost function of Corollary 1 is always 

greater than or equal to the p's on line (a) repre-

senting the cost function of Proposition 3 in both 

cases 1 and 2 for all k = |F(i)|-b(i), …, |F(i)|. Also, 

if yi < |F(i)| for some i ⋵ N' in an optimal solution 

of OFR and OFR', the lower bound (18) is strictly 

greater than the lower bound (18). 

4. Solution Procedure

We consider two heuristic procedures. In Section 
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case 1：when pi1 ≥ 0 case 2：when pi1 < 0

[Figure 1] Illustration of concave non- decreasing function of cost p for OFR

4.1, we find an optimal solution to OFR, which is 

feasible to FRP, and calculate the total cost based 

on the original cost table. In Section 4.2, we develop 

a local improvement procedure based on a tabu 

memory combined with a restarting strategy. 

4.1 Objective Function Relaxation

Suppose that we have a feasible solution (x', y', 

u') to OFR. Then, we can always derive a feasible 

solution (x', y∘, u∘) to FRP from (x', y', u') by 

letting y∘i,k(i) = 1, where k(i) = y'i and y
∘
ik = 0 for 

k ⋵ F(i)\k(i) and i ⋵ N, and u∘i,l(i) = 1, where 

l(i) = u'i and u
∘
il = 0 for l (≠ l(i)) ≤ b(i) and i 

⋵ N.

4.2 Local Improvement

We develop a local improvement heuristic algo-

rithm that can handle large size problems. The pro-

posed heuristic algorithm begins with an initial 

feasible solution, and attempts to improve the initial 

solution by adding some frequencies to BSs and 

by exchanging the frequencies assigned to a pair 

of adjacent BSs. If we cannot escape from a local 

optimal solution, which happens frequently since 

we do not allow any interference, we delete some 

frequencies. Deleting some frequencies increases 

the possibility of finding updated feasible solutions 

when adding frequencies. Another important fea-

ture of the proposed heuristic algorithm is that it 

manages a list of elite solutions, which is a subset 

of high quality feasible solutions. If we cannot im-

prove the current solution, we resume the above 

procedure with one of the feasible solutions in the 

elite solution list (ESL). Also, we employ a tabu 

list, a collection of recently generated feasible sol-

utions (not a collection of moves), to generate a 

feasible solution that has not been evaluated. Res-

tarting strategy based on ESL and incorporating 

a tabu list improves the overall quality of ESL as 

computing time increases. For describing the heu-

ristic algorithm in detail, we define some notations. 

Let F∘(i) be the set of frequencies assigned to node 

i ⋵ N, and let δ(i) = {j ⋵ N：r(i, j) > 0 or r(j, 
i) > 0} for node i ⋵ N.

4.2.1 Initial Procedure

Step 1：Set F∘(i) = F(i) for each i ⋵ N.
Step 2：Pick an arbitrary node i ⋵ N such that 

|F∘(i)| > b(i), and delete |F∘(i)|-b(i) fre-

quencies from F∘(i) at random. 

Step 3：If |F∘(i)| ≤ b(i) for all i ⋵ N, stop. 
Otherwise, go to Step 2. 
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4.2.2 Improving Procedure

For i ⋵ N and f ⋵ F∘(i), define del_move(i, f) 

as deleting a frequency f from F∘(i). Also, define 

add_move(i, f) as adding a frequency f to F∘(i) for 

i ⋵ N such that |F∘(i)| < b(i) and f ∉ F∘(i). Note 

that add_move(i, f) may cause interference with 

frequency g ⋵ F∘(j) assigned to node j ⋵ δ(i) 
if |f - g| < r(i, j). Thus, after executing add_move(i, 

f), we execute del_move (j, g)’s for j ⋵ δ(i) and 
g ⋵ F∘(j) such that |f-g| < r(i, j) at random until 

the solution becomes interference free. In partic-

ular, we denote add_move not requiring any del_ 

move by improving_add_move. We also define 

swap_move(i, f, f') for i ⋵ N, f ⋵ F∘(i) and f' ⋵ 
F\F∘(i) such that |f -g| ≥ r(i, j) for all j ⋵ δ(i) 
and g ⋵ F∘(j) as deleting a frequency f from F∘(i) 

and adding a new frequency f' ⋵ F\F∘(i) to F∘(i). 

We denote swap_move that improves the current 

solution by improving_swap_move. Identifying an 

improving_swap_move is simple. That is, for a 

given i ⋵ N, executing a swap_move(i, f, f') for 
f ⋵ F∘(i)\F(i) and f' ⋵ F(i)\F∘(i) improves the 

current solution if |f-g| ≥ r(i, j) for all j ⋵ δ(i) 
and g ⋵ F∘(j). Below, we describe the overall pro-

cedure for improving the solution.

Initialize：Set ESL = {}. Let S denote the current 

solution.

Step 1 (Improving phase I)：Execute arbitrary im-

proving_add_move’s until we cannot improve the 

current solution. If the current solution has been 

updated, update ESL with S. ESL is updated as 

follows. Add S to ESL. If |ESL| = size_ESL+1, de-

lete a solution having the largest objective value 

from ESL.

Step 2 (Improving phase II)：Execute arbitrary 

improving_swap_move’s until we cannot improve 

the current solution. If the current solution has been 

updated, update ESL with S and go to Step 1. Other-

wise, go to Step 3.

Step 3 (Diversifying phase I)：Execute arbitrary 

swap_move’s until a new solution S’ satisfying that 

Z(S') ≤ Z(S)×threshold is generated, where Z(․) 

denotes the objective value of a feasible solution 

․. If a new solution S ’ satisfying that Z(S') ≤ 

Z(S)×threshold is not generated within max_ move 

executions of swap_move, go to Step 4. Otherwise, 

update the tabu list consisting of up to size_tabu 

recently generated solutions with S’, and go to Step 

1. To identify if S ’ is a new one, we examine the 

tabu list. At every execution of swap_move, we 

perform next swap_move based on S not S ’ if Z 

(S ’) > Z(S)×threshold (%).

Step 4 (Diversifying phase II)：Execute arbitrary 

del_move’s until a new solution S' satisfying that 

Z(S') ≤ Z(S)×threshold (%) is generated. If a new 

solution S ’ satisfying that Z(S') ≤ Z(S)×threshold 

is not generated within max_move executions of 

del_move, go to Step 5. Otherwise, update the tabu 

list with S', and go to Step 1. If Z(S') > Z(S)× 

threshold, we perform next del_move based on S  

not S'. 

Step 5 (Restarting with an elite solution)：If time 

limit expired, stop. Otherwise, pick a solution S 

from ESL. Delete all the solutions in the tabu list 

with objective value greater than Z(S) × threshold 

(%), and go to Step 1. 

Although the improving procedure is simple, it 

has some features that are effective for improving 

the solution. For example, deleting frequencies as 

in Step 4 enables us to add and swap frequencies 

avoiding interference in Steps 1 and 2, respectively. 

This strategy is quite effective when compared 

with just swapping frequencies. Also, restarting 

strategy in Step 5 helps escape from local optima. 
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In particular, since we delete the worst solution in 

ESL when |ESL| exceeds a threshold, we can im-

prove the overall quality of solutions in ESL. Ma-

naging ESL in this way enables us to restart with 

a high quality solution. Deleting tabu elements with 

objective value greater than Z(T)×threshold (%) 

reduces the computing time required to examine 

the tabu list.

4.2.3 Parameter Calibration

There are four parameters affecting the perfor-

mance of our tabu search algorithm：threshold, max_ 

move, size_tabu and size_ESL. Adequate values 

for them were determined in consideration of both 

solution quality and computation time with pre-

liminary experiments.

• threshold and max_move：We perform arbitrary 

swap_move’s and del_move’s in order to di-

versify search space hoping that these random 

moves followed by improving_add_move’s and 

by improving_swap_move’s enable us to im-

prove the solution. However, we need to prevent 

the current solution from being deviated too far 

from the optimal solution. For this purpose, we 

have set threshold = 110%. That is, we seek to 

find a new solution with objective value not gre-

ater than 110% of the current solution. If max_ 

move is large, we may consume long computing 

time to evaluate moves at diversification phases. 

Thus, we have set max_move = |N|/2.

• size_tabu：We incorporate a tabu list to evaluate 

if a solution generated by moves at diversifica-

tion phases is a new one. Thus, size_tabu needs 

to be greater than max_move. We set size_tabu 

= 2×|N|. Also, in order to reduce unnecessary 

computing time, we delete all the solutions with 

objective value greater than Z(T)×threshold (%) 

from the tabu list when restarting with a sol-

ution T. 

• size_ESL：If size_ESL is too large, both the 

worst and best solutions in ESL are slowly 

updated. While, if size_ESL is too small (for ex-

ample, 1), the best solution is rarely updated. 

Thus, we set size_ESL = |N|/2.

5. Computational Results

In this section, we report computational results 

of the proposed solution procedure. Test problems 

are generated as follows.

Step 1 (Generate a network)：Generate |N| BSs 

on a square with dimension of 1000 by 1000 at ran-

dom, and calculate the distance D(i, j) for all pairs 

of BSs i and j (> i) ⋵ N. If D(i, j) > min_dist, 
where min_dist is the minimum distance to define 

r(i, j) that guarantees the connectivity of the re-

sulting network, set r(i, j) = 0. The min_dist is set 

by trial-and-error. Otherwise, set r(i, j) =⌈3×(min_ 

dist-D(i, j))/min_dist⌉ for all i and j (> i) ⋵ N. 
Step 2 (Generate F(i))：Pick a node at random, 

and assign the lowest index frequency in F not in-

curring any interference with other frequencies. 

Repeat this step until frequency assignment is not 

possible. Let F(i) denote the set of frequencies as-

signed to BS i ⋵ N. 
Step 3 (Set b(i))：Set b(i) = |F(i)|/2×(1+U[0, 1]) 

if |F(i)| > 0.9×AvgF, where AvgF is the average 

of |F(i)| over i ⋵ N. Otherwise, set b(i) = |F(i)| 

+ AvgF × U[0, 1].

Step 4 (Set cost factors)：Set pi1 = 10×|F|+⌈10 

×|F|/|F(i)|⌉ and pi,|F(i)| = 0.8×pi1×|F(i)| for all i ⋵ 
N. Set pik = pi1+(pi,|F(i)|-pi1)/log(|F(i)|)×log(k) for k 

= 2, …, |F(i)|-1 and i ⋵ N. Also, set qi1 = 10× 
|F|+⌈10×|F| × wgt_q_over_p/|b(i)|⌉ and qi,b(i) = 

0.8×qi1×b(i) for all i ⋵ N, where wgt_q_over_p is 
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<Table 1> Computational results：|N| = 30, |F| = 30, wgt_q_over_p = 1

No

Lower bound Upper bound (Gap) Elapsed time

LP-relaxation
at root node

Objective 
function 
relaxation FRP EFRP OFR EOFR Tabu FRP EFRP EOFR Tabu

FRP EFRP Best OFR EOFR

1 23174 30066 32480 25065 31164 33656(3.6%) 33656(3.6%) 36537(12.4%) 35513(9.3%) 33457(3.0%) 7200 7200 1476 600

2 17125 24019 25759 18282 24955 25759(0%) 25759(0%) 26569(3.1%) 26569(3.1%) 25759(0%) 72 87 11 600

3 12520 18485 19045 13878 16964 19045(0%) 19045(0%) 19152(0.5%) 19152(0.5%) 19045(0%) 7 9 98 600

4 17658 23562 27437 18322 24236 29078(5.9%) 29078(5.9%) 28062(2.2%) 27528(0.3%) 29099(6.0%) 7200 7200 45 600

5 15137 20066 23309 16652 21319 23629(1.3%) 23608(1.2%) 24255(4.0%) 24255(4.0%) 23501(0.8%) 7200 7200 105 600

6 18200 24703 26219 19597 24970 27498(4.8%) 27498(4.8%) 26453(0.8%) 26383(0.6%) 27310(4.1%) 7200 7200 2675 600

7 14863 20106 22305 16775 21324 22478(0.7%) 22478(0.7%) 22955(2.9%) 22955(2.9%) 22478(0.7%) 7200 7200 163 600

8 19579 26331 27799 20741 27004 27799(0%) 27799(0%) 29060(4.5%) 29060(4.5%) 27799(0%) 310 435 24 600

9 12668 16935 19047 14580 17941 19047(0%) 19047(0%) 19573(2.7%) 19573(2.7%) 19078(0.1%) 7200 5921 483 600

10 15699 20772 23024 17157 21321 23024(0%) 23024(0%) 24160(4.9%) 23936(3.9%) 23211(0.8%) 1172 970 36 600

11 14943 21133 22786 16216 21739 22786(0%) 22786(0%) 22957(0.7%) 22957(0.7%) 22786(0%) 40 31 5 600

12 16733 21695 23487 18690 22816 25096(6.8%) 24977(6.3%) 26252(11.7%) 25652(9.2%) 24538(4.4%) 7200 7200 661 600

13 17342 24113 26225 19475 25122 26432(0.7%) 26432(0.7%) 27216(3.7%) 27216(3.7%) 26413(0.7%) 7200 7200 228 600

14 15560 20919 22950 17595 22338 24709(7.6%) 24428(6.4%) 25157(9.6%) 24428(6.4%) 24289(5.8%) 7200 7200 2927 600

15 21170 28574 30319 22488 28986 30319(0%) 30319(0%) 31104(2.5%) 31142(2.7%) 30611(0.9%) 389 332 7 600

16 13899 20656 22666 15460 21726 22965(1.3%) 22965(1.3%) 23192(2.3%) 22994(1.4%) 22894(1.0%) 7200 7200 465 600

17 14003 18564 20578 15768 19260 21106(2.5%) 21235(3.1%) 21761(5.7%) 21817(6.0%) 21034(2.2%) 7200 7200 338 600

18 14944 22579 25495 16505 23610 25495(0%) 25495(0%) 25607(0.4%) 25625(0.5%) 25552(0.2%) 66 44 21 600

19 20306 27170 29615 22117 28208 29615(0%) 29615(0%) 30911(4.3%) 30986(4.6%) 29618(0.1%) 2011 1934 126 600

20 14785 20631 21677 15667 21292 21677(0%) 21677(0%) 21835(0.7%) 21835(0.7%) 21737(0.2%) 19 18 5 600

Statistics of Gap (Min：Average：Max) 0：1.8：7.6 0：1.7：6.4 0.4：4.0：12.4 0.3：3.9：9.3 0：1.6：6.0

a parameter indicating the integer multiple of cost 

factor q over cost factor p. Set qil = qi1+(qib(i)- qi1) 

/log(b(i))×log(l) for l = 2, …, b(i)-1 and i ⋵ N.

The coding was done in C, and all runs were 

made on a Pentium IV 3.2 GHz PC, 2GByte RAM 

with CPLEX version 10.0 as a LP/MIP solver. We 

report computational results of 80 test problems in 

<Table 1>～<Table 4>. “EFRP” denotes the FRP 

enhanced by inequalities (7)～(11). LP-relaxation 

bound “Best” denotes the best lower bound ob-

tained by running the CPLEX optimization proce-

dure for 7,200 seconds. Lower bound “OFR” de-

notes the optimal objective value to the formulation 

OFR obtained by Proposition 3, and lower bound 

“EOFR” denote the optimal objective value to the 

relaxed formulation OFR enhanced by Corollary 1. 

“OFR” and “EOFR” in the column “Upper bound” 

represent the objective values obtained by recover-

ing the relaxed cost factors to the original ones for 

given optimal solutions to OFR and EOFR, res-

pectively. “Tabu” denotes the results of the pro-

posed tabu search algorithm. For all test problems, 

we interrupted the CPLEX optimization procedure 

in 7,200 CPU seconds if it is not terminated until 

then. We have run the tabu search procedure for 
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<Table 2> Computational results：|N| = 30, |F| = 30, wgt_q_over_p = 3

No

Lower bound Upper bound (Gap) Elapsed time

LP-relaxation 
at root node

Objective 
function 
relaxation FRP EFRP OFR EOFR Tabu FRP EFRP EOFR Tabu

FRP EFRP Best OFR EOFR

1 15965 21877 24421 18537 23272 25024(2.4%) 25024(2.4%) 25260(3.4%) 25260(3.4%) 25002(2.3%) 7200 7200 382 600

2 15789 19912 21862 17854 20776 22112(1.1%) 22017(0.7%) 22112(1.1%) 22112(1.1%) 21923(0.2%) 7200 7200 440 600

3 16735 23513 26080 19351 25296 27333(4.8%) 27333(4.8%) 27636(5.9%) 27636(5.9%) 27373(4.9%) 7200 7200 510 600

4 18034 23524 25356 19312 24173 25356(0%) 25356(0%) 25732(1.4%) 25732(1.4%) 25356(0%) 195 223 11 600

5 13230 18002 19318 14259 18842 19318(0%) 19318(0%) 19377(0.3%) 19377(0.3%) 19343(0.1%) 205 180 106 600

6 11877 17190 18540 13019 17959 18540(0%) 18540(0%) 18680(0.7%) 18680(0.7%) 18562(0.1%) 52 80 27 600

7 13400 18705 20994 14892 19752 20994(0%) 20994(0%) 21383(1.8%) 21383(1.8%) 21302(1.4%) 263 165 26 600

8 13325 17180 19182 15205 18454 19816(3.3%) 19816(3.3%) 20226(5.4%) 20273(5.6%) 19816(3.3%) 7200 7200 863 600

9 17658 22969 25829 19838 23960 25986(0.6%) 25986(0.6%) 28516(10.4%) 28908(11.9%) 25983(0.5%) 7200 7200 193 600

10 18413 25449 28588 21514 27665 29824(4.3%) 29824(4.3%) 30132(5.4%) 30162(5.5%) 29672(3.7%) 7200 7200 1589 600

11 17012 21877 23948 19091 23275 25501(6.4%) 25398(6.0%) 26076(8.8%) 26076(8.8%) 25027(4.5%) 7200 7200 465 600

12 13187 18618 20112 13940 19183 20112(0%) 20112(0%) 20149(0.1%) 20112(0%) 20196(0.4%) 5 8 2 600

13 14109 19130 20517 15344 19936 20517(0%) 20517(0%) 20917(1.9%) 20917(1.9%) 20961(2.1%) 138 112 27 600

14 13314 17490 19634 15657 19357 21482(9.4%) 21212(8.0%) 21202(7.9%) 21562(9.8%) 21108(7.5%) 7200 7200 2540 600

15 16097 20225 22249 18384 21689 23014(3.4%) 23014(3.4%) 23418(5.2%) 23418(5.2%) 23100(3.8%) 7200 7200 1318 600

16 14074 18701 21441 16288 20171 22485(4.8%) 22485(4.8%) 23531(9.7%) 23531(9.7%) 22110(3.1%) 7200 7200 704 600

17 13928 19820 21879 16027 21201 21879(0%) 21879(0%) 23057(5.3%) 23057(5.3%) 21897(0.1%) 963 423 244 600

18 8881 11630 13593 10666 12951 13806(1.5%) 13806(1.5%) 13820(1.6%) 13820(1.6%) 13793(1.4%) 7200 7200 951 600

19 15565 21178 23684 17224 22029 23684(0%) 23684(0%) 24081(1.6%) 24081(1.6%) 23902(0.9%) 2588 2330 63 600

20 17264 23875 26142 18546 24874 26142(0%) 26142(0%) 26376(0.8%) 26376(0.8%) 26893(2.8%) 1790 1280 290 600

Statistics of Gap (Min：Average：Max) 0：2.1：9.4 0：2.0：8.0 0.1：3.9：10.4 0：4.1：11.9 0：2.1：7.5

600 seconds. The “Gap” in the column “Upper bound” 

is calculated as follows :

Gap = (Upper bound-Best lower bound) 

       /Best lower bound×100%.

From <Table 1>, we see that the LP-relaxation 

lower bounds “EFRP” enhanced by valid inequal-

ities (7)～(11) are quite tight. Also, note that lower 

bounds “EOFR” are better than the lower bounds 

“EFRP” except one (see problem 3). Comparing the 

best upper bounds found within 7,200 seconds for 

“FRP” and “EFRP”, we cannot find significant dif-

ference between them. Also, we cannot find sig-

nificant difference between the best upper bounds 

“OFR” and “EOFR.” However, note that for only 

two problems (4 and 6), either “OFR” or “EOFR” 

provides better upper bounds than “FRP” or “EFRP” 

although “OFR” or “EOFR” consumes far less com-

puting time. Also, the proposed tabu search algo-

rithm found better, equally good and worse sol-

utions for eight, five and seven problems, respec-

tively, in 600 seconds compared with the upper 

bounds “EFRP” using 4,089 seconds on the ave-

rage. 

In <Table 2>, we present computational results 
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<Table 3> Computational results：|N| = 40, |F| = 30, wgt_q_over_p = 1

No

Lower bound Upper bound (Gap) Elapsed time

LP-relaxation 
at root node

Objective 
function 
relaxation FRP EFRP OFR EOFR Tabu FRP EFRP EOFR Tabu

FRP EFRP Best OFR EOFR

1 17755 25037 26923 20005 25971 27706(2.9%) 27576(2.4%) 27737(3.0%) 27737(3.0%) 27556(2.3%) 7200 7200 921 600

2 19819 26516 28504 21194 27339 28504(0%) 28504(0%) 28680(0.6%) 28570(0.2%) 28521(0.1%) 176 162 4 600

3 19060 27385 29118 21523 28538 30322(4.1%) 30274(3.9%) 30782(5.7%) 30937(6.2%) 30302(4.0%) 7200 7200 297 600

4 22148 30767 33217 23801 31493 33457(0.7%) 33457(0.7%) 34949(5.2%) 34949(5.2%) 33457(0.7%) 7200 7200 89 600

5 19393 26941 28714 21659 28581 31091(8.2%) 31064(8.1%) 32050(11.6%) 31541(9.8%) 30062(4.6%) 7200 7200 7200 600

6 22519 30423 32378 24840 31720 34212(5.6%) 34212(5.6%) 35347(9.1%) 35347(9.1%) 34212(5.6%) 7200 7200 5441 600

7 20807 28008 29929 22530 29102 30633(2.3%) 30633(2.3%) 30839(3.0%) 30839(3.0%) 31166(4.1%) 7200 7200 576 600

8 21124 30196 32316 23500 31458 32679(1.1%) 32622(0.9%) 33064(2.3%) 33064(2.3%) 32622(0.9%) 7200 7200 4211 600

9 17342 23578 25381 19631 24715 26036(2.5%) 26388(3.9%) 26498(4.4%) 26498(4.4%) 26021(2.5%) 7200 7200 1789 600

10 20637 28254 30302 22454 29290 30302(0%) 30302(0%) 30761(1.5%) 30823(1.7%) 30302(0%) 1069 1023 86 600

11 19913 25218 27255 22097 26273 27980(2.6%) 27980(2.6%) 28798(5.6%) 28840(5.8%) 27988(2.6%) 7200 7200 2877 600

12 22801 30979 33145 25007 32037 34666(4.5%) 34289(3.4%) 36322(9.5%) 36127(8.9%) 34276(3.4%) 7200 7200 1784 600

13 9098 12367 14830 11382 14148 15182(2.3%) 15228(2.6%) 15256(2.8%) 15256(2.8%) 15134(2.0%) 7200 7200 7200 600

14 15513 20776 22813 18047 21955 23738(4.0%) 23738(4.0%) 24626(7.9%) 24626(7.9%) 23730(4.0%) 7200 7200 1713 600

15 19881 28505 30563 21785 29541 30563(0%) 30563(0%) 31001(1.4%) 31064(1.6%) 30563(0%) 7200 7200 3560 600

16 13334 19007 21203 15032 20066 21207(0.1%) 21207(0.1%) 21237(0.2%) 21237(0.2%) 21211(0.1%) 7200 7200 224 600

17 21153 29834 32371 23633 31350 34019(5.0%) 33746(4.2%) 35368(9.2%) 35140(8.5%) 33564(3.6%) 7200 7200 5444 600

18 23348 33070 36210 24631 33881 36210(0%) 36210(0%) 36210(0%) 36210(0%) 36222(0.1%) 2880 1372 3 600

19 18341 25526 27275 20268 26693 27825(2.0%) 27815(1.9%) 28043(2.8%) 27941(2.4%) 27798(1.9%) 7200 7200 5843 600

20 21898 31689 34275 23462 32734 34275(0%) 34275(0%) 34624(1.0%) 34624(1.0%) 342750%) 7200 5570 231 600

Statistics of Gap (Min:Average:Max) 0:2.4:8.2 0:2.3:8.1 0:4.3:11.6 0:4.2:9.8 0:2.1:5.6

for twenty test problems with more emphasis on 

interference cost q against frequency drop cost p. 

Similar to the results of <Table 1>, the LP-relaxa-

tion lower bounds “EFRP” are quite tight compared 

with those of “FRP.” Also, note that lower bounds 

“EOFR” are always better than the lower bounds 

“EFRP.” However, “EOFR” (or “OFR”) upper bou-

nds are not as good as those obtained by “EFRP” 

within 7,200 seconds. Observe that “EFRP” always 

provides better (or equally good) feasible solutions 

than “FRP” does. Tabu search algorithm found 

better, equally good and worse solutions for eight, 

two and ten problems, respectively. Average gap 

of “Tabu” upper bounds is 2.1%, while the average 

gap of “EFRP” is 2.0%. 

In <Table 3> and <Table 4>, we provide com-

putational results for some larger test problems. 

Similar to the results in <Table 1> and <Table 

2>, we see that valid inequalities (7)～(11) im-

proved the LP-relaxation bounds significantly. For 

the problems in <Table 3> and <Table 4>, upper 

bounds by “OFR” or by “EOFR” are not sat-

isfactory although “EOFR” provides better lower 

bounds than “EFRP” does. Note that there are five 

test problems in <Table 3> and <Table 4> that 

are not optimally solved within 7,200 seconds using 
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<Table 4> Computational results：|N| = 40, |F| = 30, wgt_q_over_p = 3

No

Lower bound Upper bound (Gap) Elapsed time

LP-relaxation 
at root node

Objective 
function 
relaxation FRP EFRP OFR EOFR Tabu FRP EFRP EOFR Tabu

FRP EFRP Best OFR EOFR

1 11096 15928 17654 13326 17279 18670(5.7%) 18626(5.5%) 18626(5.5%) 18626(5.5%) 18626(5.5%) 7200 7200 713 600

2 20453 28306 29981 21987 29109 29981(0%) 29981(0%) 30526(1.8%) 30526(1.8%) 29990(0.1%) 683 660 73 600

3 17824 25106 27020 19443 25868 27081(0.2%) 27081(0.2%) 27081(0.2%) 27081(0.2%) 27027(0.1%) 7200 7200 116 600

4 20410 28142 30860 22183 29346 30860(0%) 30860(0%) 31613(2.4%) 31613(2.4%) 30889(0.1%) 7200 4183 2716 600

5 21724 31300 33310 24410 32606 34290(2.9%) 34240(2.7%) 35440(6.4%) 35509(6.6%) 34178(2.6%) 7200 7200 6257 600

6 14822 20622 22250 16742 21864 22610(1.6%) 22610(1.6%) 23166(4.1%) 23166(4.1%) 22810(2.5%) 7200 7200 3026 600

7 17395 23879 25787 20075 25523 27472(6.5%) 27557(6.8%) 27492(6.6%) 27492(6.6%) 27208(5.5%) 7200 7200 7200 600

8 19356 27283 29071 22903 29814 32024(10.1%) 31850(9.5%) 33023(13.6%) 33215(14.2%) 31362(7.9%) 7200 7200 7200 600

9 22954 31631 34238 24558 32700 34864(1.8%) 34864(1.8%) 35783(4.5%) 35676(4.2%) 34677(1.2%) 7200 7200 108 600

10 25047 34279 36972 26232 34905 37508(1.4%) 37504(1.4%) 38178(3.2%) 38301(3.6%) 37311(0.9%) 7200 7200 35 600

11 18801 27544 29775 21099 28869 30261(1.6%) 30261(1.6%) 31202(4.8%) 31202(4.8%) 30082(1.0%) 7200 7200 820 600

12 24454 33693 36576 26826 35284 38563(5.4%) 38410(5.0%) 40956(11.9%) 40956(11.9%) 37790(3.3%) 7200 7200 7200 600

13 15420 21054 22631 17289 21842 22841(0.9%) 22841(0.9%) 23232(2.6%) 23232(2.6%) 23121(2.1%) 7200 7200 329 600

14 21246 28149 30788 22789 29303 31139(1.1%) 31139(1.1%) 32106(4.2%) 32106(4.2%) 31007(0.7%) 7200 7200 204 600

15 23981 33527 35704 26236 34879 37050(3.7%) 36910(3.3%) 37166(4.1%) 37166(4.1%) 36690(2.7%) 7200 7200 1196 600

16 17603 23232 25330 20226 24616 26685(5.3%) 26662(5.2%) 28043(10.7%) 27521(8.6%) 26431(4.3%) 7200 7200 4758 600

17 23173 31549 34060 25084 32816 35633(4.6%) 35633(4.6%) 37099(8.9%) 37204(9.2%) 35603(4.5%) 7200 7200 7200 600

18 20386 27850 30522 22363 29282 31608(3.5%) 31305(2.5%) 32519(6.5%) 32514(6.5%) 31160(2.1%) 7200 7200 1613 600

19 23186 30875 32829 24681 31586 32829(0%) 32829(0%) 33227(1.2%) 33227(1.2%) 32845(0.1%) 519 460 36 600

20 23897 33472 35687 25945 34515 35975(0.8%) 35975(0.8%) 36794(3.1%) 36794(3.1%) 35800(0.3%) 7200 7200 147 600

Statistics of Gap (Min：Average：Max) 0：2.8：10.1 0：2.7：9.5 0.2：5.3：13.6 0.2：5.2：14.2 0.1：2.3：7.9

“EOFR.” In this case, we cannot be sure if the best 

upper bound of EOFR provides a lower bound. 

Thus, for these test problems, we marked “NA” 

in the column lower bound by “EOFR.” For test 

problems even in <Table 3> and <Table 4>, tabu 

search algorithm found quite good feasible solu-

tions. 

From the computational results displayed in 

<Table 1>～<Table 4>, we see that 

(1) the developed valid inequalities (7)～(11) are 

effective for improving the LP-relaxation 

bound,

(2) the optimal objective value to EOFR provides 

tighter lower bounds than those by valid in-

equalities (7)～(11), while the upper bounds re-

covered from the optimal solution to EOFR are 

not as good as those obtained by EFRP, while

(3) the proposed tabu search algorithm exhibits 

better performance in terms of both solution 

quality and computing time when compared 

with the CPLEX optimization procedure using 

EFRP (or FRP).

6. Conclusions

In this paper, we considered a frequency re-
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assignment problem arising from the reconfigura-

tion of radio networks. For this problem, we devel-

oped an IP model. Also, we developed some valid 

inequalities and an objective function relaxation 

scheme to derive tight lower bounds. For solving 

large problem instances, we developed an effective 

heuristic procedure. Computational results show 

that the developed valid inequalities are effective 

for reducing the computation time to find an opti-

mal solution for small size problems. Also, the pro-

posed heuristic procedure finds feasible solutions 

of good quality within reasonable time bound for 

large size problems. 
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