• Title/Summary/Keyword: Radio Frequency

Search Result 3,694, Processing Time 0.028 seconds

RFID Indoor Location Recognition Using Neural Network (신경망을 이용한 RFID 실내 위치 인식)

  • Lee, Myeong-hyeon;Heo, Joon-bum;Hong, Yeon-chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.141-146
    • /
    • 2018
  • Recently, location recognition technology has attracted much attention, especially for locating people or objects in an indoor environment without being influenced by the surrounding environment GPS technology is widely used as a method of recognizing the position of an object or a person. GPS is a very efficient, but it does not allow the positions of objects or people indoors to be determined. RFID is a technology that identifies the location information of a tagged object or person using radio frequency information. In this study, an RFID system is constructed and the position is measured using tags. At this time, an error occurs between the actual and measured positions. To overcome this problem, a neural network is trained using the measured and actual position data to reduce the error. In this case, since the number of read tags is not constant, they are not suitable as input values for training the neural network, so the neural network is trained by converting them into center-of-gravity inputs and median value inputs. This allows the position error to be reduce by the neural network. In addition, different numbers of trained data are used, viz. 50, 100, 200 and 300, and the correlation between the number of data input values and the error is checked. When the training is performed using the neural network, the errors of the center-of-gravity input and median value input are compared. It was found that the greater the number of trained data, the lower the error, and that the error is lower when the median value input is used than when the center-of-gravity input is used.

ZnO Film Deposition on Aluminum Bottom Electrode for FBAR Filter Applications and Effects of Deposition Temperature on ZnO Crystal Growth (FBAR 필터 응용을 위한 Al 하부전극 상에서 ZnO 박막 증착 및 온도가 ZnO 결정의 성장에 미치는 영향)

  • ;;;Mai Linh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.255-262
    • /
    • 2003
  • In this paper, an investigation on the ZnO film deposition using radio-frequency magnetic sputtering techniques on aluminum bottom electrode for film bulk acoustic wave resonator (FBAR) filter applications and the temperature effects on the ZnO film growth is presented. The investigation on how much impact the actual process temperature may have on the crystal growth is more meaningful if it is considered that the piezoelectricity property of ZnO films plays a dominant role in determining the resonance characteristics of FBAR devices and the piezoelectricity is determined by the degree of the c-axis preferred orientation of the deposited ZnO films. In this experiment, it was found that the growth of ZnO crystals has a strong dependence on the deposition temperature ranged from room temperature to $350^{\circ}C$ regardless of the RF powers applied and there exist 3 temperature regions divided by 2 critical temperatures according to the degree of the c-axis preferred orientation. Overall, below $200^{\circ}C$, ZnO deposition results in columnar grains with a highly preferred c-axis orientation. With this ZnO film, a multilayered FBAR structure could be realized successfully.

A Study on Properties of N-type ZnS Deposited at Various RF Power for Solar Cell Applications (RF Power에 따른 태양전지용 N-type ZnS 특성연구)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Jeong, Woon-Jo;Lee, Suk-Ho;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hea-Duck
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.574-577
    • /
    • 2011
  • In this study, we use the $2.5cm{\times}7.5cm$ soda lime glass as the substrate. We used the ultrasonicator. Glass was dipped in the acetone, methanol and DI water respectively for 10 minutes. Ar(99.99%)gas was used as the sputtering gas. We varied the RF power between 100~175 W with 25 W steps. Base pressure was kept by turbo molecular pump at $3.0{\times}10^{-6}$ torr. Working pressure was kept by injection of Ar gas. ZnS thin films were deposited with the radio frequency magnetron sputtering technique at various temperatures and sputtering powers. It is also clearly observed that, the intensity of the (111) XRD peak increases with increasing the RF power. Electrical properties were measured by hall effect methods at room temperature. The resistivity, carrier concentration, and hall mobility of ZnS deposited on glass substrate as a function of sputtering power. It can be seen that as the sputtering power increase from 100 to 175 W, the resistivity of the films on glass decreased significantly from $8.1{\times}10^{-2}$ to $1.2{\times}10^{-3}\;{\Omega}{\cdot}cm$. This behavior could be explained by the effect of the sputtering power on the mobility and carrier concentration. When the RF power increases, the carrier concentration increases slightly while the resistivity decreases significantly. These variation originate from improved crystallinity and enhanced substitutional doping as the sputtering power increases.

Use of Unmanned Aerial Vehicle for Multi-temporal Monitoring of Soybean Vegetation Fraction

  • Yun, Hee Sup;Park, Soo Hyun;Kim, Hak-Jin;Lee, Wonsuk Daniel;Lee, Kyung Do;Hong, Suk Young;Jung, Gun Ho
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.126-137
    • /
    • 2016
  • Purpose: The overall objective of this study was to evaluate the vegetation fraction of soybeans, grown under different cropping conditions using an unmanned aerial vehicle (UAV) equipped with a red, green, and blue (RGB) camera. Methods: Test plots were prepared based on different cropping treatments, i.e., soybean single-cropping, with and without herbicide application and soybean and barley-cover cropping, with and without herbicide application. The UAV flights were manually controlled using a remote flight controller on the ground, with 2.4 GHz radio frequency communication. For image pre-processing, the acquired images were pre-treated and georeferenced using a fisheye distortion removal function, and ground control points were collected using Google Maps. Tarpaulin panels of different colors were used to calibrate the multi-temporal images by converting the RGB digital number values into the RGB reflectance spectrum, utilizing a linear regression method. Excess Green (ExG) vegetation indices for each of the test plots were compared with the M-statistic method in order to quantitatively evaluate the greenness of soybean fields under different cropping systems. Results: The reflectance calibration methods used in the study showed high coefficients of determination, ranging from 0.8 to 0.9, indicating the feasibility of a linear regression fitting method for monitoring multi-temporal RGB images of soybean fields. As expected, the ExG vegetation indices changed according to different soybean growth stages, showing clear differences among the test plots with different cropping treatments in the early season of < 60 days after sowing (DAS). With the M-statistic method, the test plots under different treatments could be discriminated in the early seasons of <41 DAS, showing a value of M > 1. Conclusion: Therefore, multi-temporal images obtained with an UAV and a RGB camera could be applied for quantifying overall vegetation fractions and crop growth status, and this information could contribute to determine proper treatments for the vegetation fraction.

GPS L5 Signal Tracking Scheme Using GPS L1 Signal Tracking Results (GPS L1 신호추적 결과를 이용한 GPS L5 신호추적 기법)

  • Joo, Inone;Lee, Sanguk
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.99-104
    • /
    • 2012
  • The United States will proceed with the effort to modernize the GPS system, and one of its main content is to provide L5 signal. L5 will be transmitted in a radio band reserved exclusively for aviation safety services. And, L5, in combination with L1, will improve the position accuracy via ionospheric correction and robustness via signal redundancy. However, The acquisition processing time of L5 takes longer than that of L1 as the code length of L5 is 10 times longer than that of L1. To reduce this acquisition processing time, a higher number of correlators in the aquisition module should be used. However, there is a problem that this causes increase in the complexity of the correlator configuration and the computation power. So, in this paper, we propose L5 signal tracking scheme using tracking results in the GPS L1/L5 receiver. The proposed scheme could reduce the hardware complexity as the GPS L5 signal acquisition module is not needed, and provide fast and stable tracking of L5 signal by aiding L1 tracking results such as PRN, the code phase synchronization, and the Doppler frequency. The feasibility of the proposed scheme is demonstrated through simulation results.

Advanced Indoor Location Tracking Using RFID (RFID를 이용한 개선된 실내 위치 추적)

  • Joo, Won-lee;Kim, Hyo-Sun;Jung, Yeong-Ah;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.425-430
    • /
    • 2017
  • RFID is a technology that uses radio frequency to read information in tags attached to objects or people. Because it reads the information without contact when tracking the location using tags in a RFID system, there can be errors between the actual position and measured position. In this paper, three methods (the method of radiation pattern, the method of the median value, and the method using both the radiation pattern and median value) are proposed to identify the location of objects or people using the RFID technique. The location identification system based on RFID was constructed and tags were arranged in a square pattern. The real location and experimentally predicted location of an object containing a reader were compared to confirm the error. Instead of the existing papers that obtained the approximately location of a reader by calculating the center of gravity of all tags read by that reader, in this study, the predicted location was obtained by the median value and the radiation pattern. This study validated which method was the most efficient among the three methods proposed in this paper through the data of the read tags. As a result, the method of the median value had the smallest error among those assessed.

Energy-Efficient Routing Protocol based on Interference Awareness for Transmission of Delay-Sensitive Data in Multi-Hop RF Energy Harvesting Networks (다중 홉 RF 에너지 하베스팅 네트워크에서 지연에 민감한 데이터 전송을 위한 간섭 인지 기반 에너지 효율적인 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.611-625
    • /
    • 2018
  • With innovative advances in wireless communication technology, many researches for extending network lifetime in maximum by using energy harvesting have been actively performed on the area of network resource optimization, QoS-guaranteed transmission, energy-intelligent routing and etc. As known well, it is very hard to guarantee end-to-end network delay due to uncertainty of the amount of harvested energy in multi-hop RF(radio frequency) energy harvesting wireless networks. To minimize end-to-end delay in multi-hop RF energy harvesting networks, this paper proposes an energy efficient routing metric based on interference aware and protocol which takes account of various delays caused by co-channel interference, energy harvesting time and queuing in a relay node. The proposed method maximizes end-to-end throughput by performing avoidance of packet congestion causing load unbalance, reduction of waiting time due to exhaustion of energy and restraint of delay time from co-channel interference. Finally simulation results using ns-3 simulator show that the proposed method outperforms existing methods in respect of throughput, end-to-end delay and energy consumption.

Effect of Damage to Medial Amygdaloid Nucleus on Pancreatic Exocrine Secretion Stimulated by Hydrochloric Acid in the Rat (흰쥐에서 내측 편도핵의 손상이 염산 자극에 의한 췌장 외분비에 비치는 영향)

  • Kim, Myung-Suk;Yoon, Shin-Hee;Hahn, Sang-June;Kim, Mie-Hye
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.273-280
    • /
    • 1988
  • This study was undertaken to investigate the effect of the medial amygdaloid nucleus on the pancreatic exocrine secretion and plasma secretin concentration in 44 male albino rats. Twenty-three rats in which the medial amygdaloid nucleus was damaged bilaterally by radio frequency a.c. through stereotaxically inserted electrodes (medical amygdaloid group, MA) and twenty-one rats which received the same operation without damage (operated control, OC), were prepared. Under urethan anesthesia, 0.01 N hydrochloric acid (HCl) or physiological saline (0.9% NaCl) was infused at a rate of 0.18 ml/min into the duodenum for 20 minutes. Pancreatic jucie was collected for the 20 min infusion period. After collection of pancreatic juice, blood was sampled from the abdominal aorta for the radioimmunoassay of plasma secretin concentration. In the MA group, the exocrine pancreatic secretory response to 0.01 N HCI as well as saline infusion was significantly inhibited compared with that in the OC group. The pancreatic protein output of the MA group significantly decreased after the saline infusion and tended to decrease after the 0.01 N HCI infusion, compared with that of the OC group. However, there was no significant difference in plasma secretin concentration between the two groups. Therefore it is strongly suggested that the rat medial amygdaloid nucleus has a facilitatory influence on both basal and acid-stimulated pancreatic exocrine secretion, but the releasing mechanism of secretin appears not to be involved in the influence.

  • PDF

Analysis on the EMC evaluating method for applying wireless communications in NPP (원전 내 무선통신 적용에 대한 전자파 적합성 평가방법 분석)

  • Kang, SeungSeok;Lim, Tae Heung;Choo, Jaeyul;Kim, HyungTae;Kim, DaeHee;Byun, Gangil;Park, Jong Eon;Lee, Jun-Yong;Choo, Hosung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2221-2231
    • /
    • 2017
  • In this paper, we surveyed previous cases, network protocols (such as Wi-Fi, Zigbee, Z-wave, and WirelessHart) and propagation characteristics on the application of maintaining equipments for instrumentation and control (I&C) using wireless communication techniques inside the nuclear power plant (NPP). In addition, we compared and analyzed the difference of detailed regulations with respect to the electromagnetic interference (EMI) and radio frequency interference (RFI) in the Regulatory Guide 1.180 rev. 1 (RG. 1.180) for adopting the wireless communication techniques inside the NPP, and other regulations, such as MIL-STD 461E and IEC 61000-4, that are recognized in the KINS/RG-N03.09 (Rev. 2). Furthermore, we investigated evaluating factors about electromagnetic properties by considering indoor environments, wave scattering, shielding effectiveness, and the indoor wave attenuation model that were not included in the current electromagnetic compatibility regulation.

A Study on the Technology Development of User-based Home Automation Service (사용자 위치기반 홈오토메이션 서비스 기술 개발에 관한 연구)

  • Lee, Jung-Gi;Lee, Yeong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2017
  • As Internet of Things (IoT) technology advances, there is a growing demand for location-based services (LBSs) to identify users' mobility and identity. The initial LBS system was mainly used to measure position information by measuring the phase of a signal transmitted from a global positioning system (GPS) satellite or by measuring distance to a satellite by tracking the code of a carrier signal. However, the use of GPS satellites is ineffective, because it is difficult to receive satellite signals indoors. Therefore, research on wireless communications systems like ultra-wide band (UWB), radio frequency identification (RFID), and ZigBee are being actively pursued for location recognition technology that can be utilized in an indoor environment. In this paper, we propose an LBS system that includes the 2.45GHz band for chirp spread spectrum (CSS), and the 3.1-10.6GHz band and the 250-750MHz bands for UWB using the IEEE 802.15.4a standard for low power-based location recognition. As a result, we confirmed that the 2.45GHz Industrial, Scientific and Medical (ISM) band RF transceiver and the ranging function can be realized in the hardware and has 0dBm output power.