• Title/Summary/Keyword: Radio

Search Result 9,463, Processing Time 0.044 seconds

RADIO AND RADIO ANTIPODAL LABELINGS FOR CIRCULANT GRAPHS G(4k + 2; {1, 2})

  • Nazeer, Saima;Kousar, Imrana;Nazeer, Waqas
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.173-183
    • /
    • 2015
  • A radio k-labeling f of a graph G is a function f from V (G) to $Z^+{\cup}\{0\}$ such that $d(x,y)+{\mid}f(x)-f(y){\mid}{\geq}k+1$ for every two distinct vertices x and y of G, where d(x, y) is the distance between any two vertices $x,y{\in}G$. The span of a radio k-labeling f is denoted by sp(f) and defined as max$\{{\mid}f(x)-f(y){\mid}:x,y{\in}V(G)\}$. The radio k-labeling is a radio labeling when k = diam(G). In other words, a radio labeling is an injective function $f:V(G){\rightarrow}Z^+{\cup}\{0\}$ such that $${\mid}f(x)=f(y){\mid}{\geq}diam(G)+1-d(x,y)$$ for any pair of vertices $x,y{\in}G$. The radio number of G denoted by rn(G), is the lowest span taken over all radio labelings of the graph. When k = diam(G) - 1, a radio k-labeling is called a radio antipodal labeling. An antipodal labeling for a graph G is a function $f:V(G){\rightarrow}\{0,1,2,{\ldots}\}$ such that $d(x,y)+{\mid}f(x)-f(y){\mid}{\geq}diam(G)$ holds for all $x,y{\in}G$. The radio antipodal number for G denoted by an(G), is the minimum span of an antipodal labeling admitted by G. In this paper, we investigate the exact value of the radio number and radio antipodal number for the circulant graphs G(4k + 2; {1, 2}).

Digital-Radio Converter using Vector Synthesis Method (벡터합성방법에 의한 디지털-무선 변환장치의 연구)

  • 주창복;김성호
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.65-68
    • /
    • 2000
  • In this paper, as a compatible software radio transmission system, Digital-Radio conversion system which can directly change the digital signal generated by the logic circuit into radio signal is proposed. By the vector synthesis method, the digital signals can change directly into radio signal. If such a circuit is realized, RF circuit and an antenna can be composed by the simple one device, and the radio is directly controlled and performed by the software processing which is the essence of software radio. This Digital-Radio conversion system of this paper give many number of communication channels being offered by PN code and offer a hardware design flexibility by digitization, therefore it decrease the percentage ratio of hardware of system and give a more flexible function of software basis. In this paper, this proposed Digital-Radio conversion system is called D/R converter, and the principle of this D/R converter, radio signal generation algorithm is explained and the performance characteristics of proposed algorithm is shown in time base by the computer simulation method.

  • PDF

Implementation of SDR Platform for LTE using GNU Radio and NDK of TI DSP (GNU Radio와 TI DSP의 NDK를 이용한 LTE SDR 플랫폼 구현)

  • Jin, Hwajong;Kim, Daejin;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.93-99
    • /
    • 2018
  • This paper presents an implementation method using NDK (Network Developer's Kit) of GNU (GNU is Not Unix) Radio and Multicore DSP (Digital Signal Processor) to implement LTE (Long Term Evolution) SDR (Software Defined Radio) Platform. In order to satisfy 1.4MHz, 3MHz, 5MHz and 10MHz of the bandwidth supported by LTE, USRP (Universal Software Radio Peripheral) X series which is an RF (Radio Frequency) transceiver of Ettus Research was used. To control this, GNU Radio which is an open source software radio toolkit was used. We also used NDK from TI (Texas Instruments) DSP to transfer data between USRP and DSP. Experimental results show throughput results according to each bandwidth, thus confirming the feasibility of implementing LTE SDR Platform using GNU Radio and NDK of TI DSP.

A Study on Radio Wave Management Regulations in the United States to Improve the Domestic Radio Wave Management System (국내 전파관리 제도 개선을 위한 미국의 전파관리규제에 대한 연구)

  • Yoon, Chan-Ho;Seok, Gyeong-Hyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.379-388
    • /
    • 2020
  • The contents and scope of this study are to analyze the problems of the current radio service and radio station classification system, and to investigate the radio wave management cases in the United States to provide a reasonable and efficient radio wave management method. The results of this study can be used as basic data when revising the legal system regarding radio wave enforcement regulations, radio service and radio station classification standards. It is expected that in the future, a detailed commentary on the definition and classification system of new radio / radio stations will be prepared to increase policy compliance in practice, while contributing to enhancing the consistency and efficiency of radio station licensing and inspection.

Protection of Digital TV from Cognitive Radio Interference

  • Yoon, Young-Keun;Hong, Heon-Jin;Choi, Ik-Guen
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.393-395
    • /
    • 2007
  • Analytic modeling and computational simulation for the protection of DTV from cognitive radio interference are performed. Protection is achieved by using the protection ratio, which is derived through system modeling and its analysis. On the frequency coordination between digital TV and cognitive radio, an analysis in a co-channel environment, in a rural area in Korea, is performed.

  • PDF