• Title/Summary/Keyword: Radical density

Search Result 314, Processing Time 0.029 seconds

A study on the behavior of CF, CF2 radicals in an inductively coupled plasma using Laser Induced Fluorescence (레이저 유도 형광법을 이용한 유도 결합 플라즈마내의 CF, CF2 라디칼의 거동에 관한 연구)

  • 김정훈;이호준;황기웅;주정훈
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.76-80
    • /
    • 2000
  • CF & $CF_2$ radicals in a $C_4F_8$ inductively coupled plasma were observed with laser induced fluorescence. 251.9nm UV laser was used for the $CF_2$ excitation and 265.3nm UV emitted light for the detection which has the maximum intensity among many induced fluorescence lights. In the case of CF radical detection, 232.9nm UV laser was used for the excitation and 247.6nm for the detection. $CF_2$ radical density increased toward substrate, while CF radical had its maximum at about 10nm away from the substrate. The atomic fluorine density which was studied by the actinometry increased as the position moves away from the substrate. This phenomena was thought to have a close relation with the polymer growth on the wafer. When the bias voltage increased, $CF_2$ , CF radicals decreased while the atomic fluorine increased tio some extent and then decreased, which was thought to be due to the change in the ionization and dissociation.

  • PDF

Analysis of Process Parameter dependency on the characteristics of high density fluoro carbon plasma using global model (글로벌 모델에 의한 저온 고밀도 플루오로카본 플라즈마 특성의 공정변수 의존성 해석)

  • Lee, Ho-Jun;Tae, Heung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.879-881
    • /
    • 1999
  • Radical and ion densities in a CF4 plasma have been calculated as a function of input power density. 9as pressure and feed gas flow rate using simple 0 dimensional global model. Fluorine atom is found to be the most abundant neutral particle. Highly fragmented species such as CF and CF+ become dominant neutral and ionic radical at the high power condition. As the pressure increases. ion density increases but ionization rate decreases due to the decrease in electron temperature. The fractional dissociation of CF4 feed gas decreases with pressure after increasing at the low pressure range. Electron density and temperature are almost independent of flow rate within calculation conditions studied. The fractional dissociation of CF4 monotonically decreases with flow rate. which results in increase in CF3 and decrease in CF density. The calculation results show that the SiO2 etch selectivity improvement correlates to the increase in the relative density of fluorocarbon ion and neutral radicals which has high C/F ratio.

  • PDF

Large Area Diamond Nucleation and Si (001) Using Magnetoactive Microwave Plasma Chemical Vapor Deposition

  • Hyeongmin Jeon;Akimitsu Hatta;Hidetoshi Suzuki;Nam Jiang;Jaihyung Won;Toshimichi Ito;Takatomo Sasaki;Chongmu Lee;Akio Hiraki
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.159-162
    • /
    • 1997
  • Diamond was uniformly nucleated on large area Si(001) substrate (3cm$\times$4cm) using the low pressure magnetoactive microwave plasma chemical vapor deposition. $CH_4/He$ gas mixture was used as source gas in order to obtain high radical density in the nucleation enhancement step. $CH_3$radical density was measured by means of infrared laser absorption spectroscopy. The effect of substrate bias voltage on diamond nucleation was examined. The results showed that a suitable positive bias voltage appled to the substrate with respect to the chamber could enhance diamond nucleation while a negative bias voltages leaded to deposition of only non-diamond phase carbon.

  • PDF

Antioxidative Properties of Sachil-Tang Extract

  • Yi, Hyo-Seung;Moon, Jin-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.872-882
    • /
    • 2009
  • Sachil-Tang (SCT) has been traditionally used as a prescription of spasm of the esophagus by stress, pectoralgia and oppressive feeling of the chest in Oriental medicine. This study was carried out to investigate the antioxidant activities of the ethanol extract of SCT and its inhibitory effect on intracellular oxidation and vascular cell adhesion molecule-1 expression in human umbilical vein endothelial cells (HUVECs) using various methods. The SCT extract showed a strong inhibitory effect on free radical generating model systems, including DPPH radical, superoxide anions, hydroxyl radical, peroxynirite and nitric oxide. Besides, the SCT extract exhibited a strong inhibitory effect on lipid peroxidation in rat liver homogenate induced by $FeCl_2$-ascorbic acid, and protected plasmid DNA against the strand breakage in a Fenton's reaction system. The SCT extract also inhibited copper-mediated oxidation of human low-density lipoprotein (LDL), and repressed relative electrophoretic mobility of LDL. Furthermore, the SCT extract protected intracellular oxidation induced by various free radical generators and inhibited expression of vascular cell adhesion molecule-1 (VCAM-1) in HUVECs. These results suggest that SCT can be an effective natural antioxidant and a possible medicine of atherosclerosis.

Calculations of radical and ion densities in a $CF_4$ plasma using global model (글로벌 모델에 의한 $CF_4$플라즈마에서의 라디칼 및 이온 밀도 계산)

  • 이호준;태흥식;이정희;이용현;황기웅
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.374-380
    • /
    • 1998
  • Radical and ion densities in a $CF_4$plasma have been calculated as a function of input power density, gas pressure and feed gas flow rate using simple 0 dimensional global model. Fluorine atom is found to be the most abundant neutral particle. Highly fragmented species such as CF and $CF^+$ become dominant neutral and ionic radical at the high power condition. As the pressure increase, ion density increases but ionization rate decreases due to the decrease in electron temperature. The fractional dissociation of $CF_4$feed gas decreases with pressure after increasing at the low pressure range. Electron density and temperature are almost independent of flow rate within calculation conditions studied. The fractional dissociation of $CF_4$monotonically decreases with flow rate, which results in increase in $CF_3$and decrease in CF density. The calculation results show that the $SiO_2$etch selectivity improvement correlates to the increase in the relative density of fluorocarbon ion and neutral radicals which has high C/F ratio.

  • PDF

Screening of Antioxidative Compounds toward Human Low Density Lipoprotein (LDL) from Useful Plants (유용식물로부터 Human Low Density Lipoprotein(LDL)에 대한 항산화제의 탐색)

  • 임복규;류병호
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.2
    • /
    • pp.138-146
    • /
    • 2004
  • This study was designed to investigate antioxidative activity of substances isolated from 25 kinds of useful plants resources toward free radical and human low density lipoprotein(LDL). Methanol extracts of Oenothers odorate had the highest antioxidative activity similar with ${\alpha}$-tocopherol. Methanol extracts of Oenothers odorate was extracted again by the ethylacetate. The ethylacetate soluble acidic fraction obtained from methanol extract of Oenothers odorate showed highest activity toward human LDL. Each fraction was purified through Sepadex LH-20 chromatography by elution of chloroform-methanol mixture (90:10 v/v). Fraction, F-2 obtained from Oenothers odorate showed at highest levels of electron donating activity. Fraction, F-2 was identified as 3,4-dihydroxybenzoic acid and 3-hydroxycinnamic acid.

Feasibility Test for Radical reactions in Organic Light Emitting Diode (유기 발광 다이오드 내부의 라디칼 반응 가능성 검사)

  • Han, Chul-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.365-368
    • /
    • 2008
  • Feasibility test for radical reactions in organic light emitting diode(OLED) has been applied on OLED consisting of hole transport layer(HTL) and electron transport layer(ETL). Organic molecules such as 4,4',-Bis[N-(1-naphthyl)-N-phenylamino] biphenyl(NPD) and 4,4',4"-tris(3-methylphenylphenylamino)triphenylamine(m-MTDATA) are chosen for hole transport layer(HTL) and Bathocuproine(BCP) for electron transport layer(ETL) in this study. Informations on energy and shape of frontier orbitals and data on radical reactions of simple aromatics from semiconductor($TiO_2$) photocatalysis have provided basis for determining feasibility for radical reactions in OLED. The outcome of our feasibility test would be useful in designing optimum molecule for organic layer with a view to extending the lifetime of OLED.

Detection of Radiation Degradation of LDPE by ESR Spectroscopy (전자스핀공명을 이용한 저밀도 폴리에틸렌의 방사선 열화 검지)

  • Kim Ki-Yup;Lee Chung;Ryu Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.81-86
    • /
    • 2005
  • This study has investigated radiation degradation of low density polyethylene(LDPE). Samples were irradiated up to 800kGy using a $Co^{60}\;\gamma-ray$ at a dose rate of 5kGy/hr in the presence of air atmosphere at room temperature. After irradiation, storing for 2 weeks, free radical measurement of LDPE has established by electron spin resonance(ESR). ESR measurement showed that free radical concentration(FRC) was increased with radiation dose and decreased with the time. The radical types showed alkyl, allyl, and peroxy radical with the irradiation, these changed to peroxy radical with the time.

Measurement of electron density of atmospheric pressure Ar plasma jet by using Michelson interferometer

  • Lim, Jun-Sup;Hong, Young June;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.195.1-195.1
    • /
    • 2016
  • Currently, as Plasma application is expanded to the industrial and medical industrial, low temperature plasma applications became important. Especially in medical and biology, many researchers have studied about generated radical species in atmospheric pressure low temperature plasma directly adapted to human body. Therefore, so measurement their plasma parameter is very important work and is widely studied all around world. One of the plasma parameters is electron density and it is closely relative to radical production through the plasma source. some kinds of method to measuring the electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods have very expensive cost and complex configuration to composed of experiment system. We selected Michelson interferometer system which is very cheap and simple to setting up, so we tried to measuring electron density by laser interferometer with laser beam chopping module for measurement of temporal phase difference in plasma jet. To measuring electron density at atmospheric pressure Ar plasma jet, we obtained the temporal phase shift signal of interferometer. Phase difference of interferometer can occur because of change by refractive index of electron density in plasma jet. The electron density was able to estimate with this phase difference values by using physical formula about refractive index change of external electromagnetic wave in plasma. Our guiding laser used Helium-Neon laser of the centered wavelength of 632 nm. We installed chopper module which can make a 4kHz pulse laser signal at the laser front side. In this experiment, we obtained more exact synchronized phase difference between with and without plasma jet than reported data at last year. Especially, we found the phase difference between time range of discharge current. Electron density is changed from Townsend discharge's electron bombardment, so we observed the phase difference phenomenon and calculated the temporal electron density by using phase shift. In our result, we suggest that the electron density have approximately range between 1014~ 1015 cm-3 in atmospheric pressure Ar plasma jet.

  • PDF

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF