• Title/Summary/Keyword: Radical chemistry

Search Result 1,014, Processing Time 0.024 seconds

Product-Resolved Photodissociations of Iodotoluene Radical Cations

  • Shin, Seung-Koo;Kim, Byung-Joo;Jarek, Russell L.;Han, Seung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.267-270
    • /
    • 2002
  • Photodissociations of o-, m-, and p-iodotoluene radical cations were investigated by using Fourier-transform ion cyclotron resonance (FT-ICR) spectrometry. Iodotoluene radical cations were prepared in an ICR cell by a photoionization charge-transfer method. The time-resolved one-photon dissociation spectra were obtained at 532 nm and the identities of $C_7H_7^+$ products were determined by examining their bimolecular reactivities toward toluene-$d_8$. The two-photon dissociation spectra were also recorded in the wavelength range 615-670 nm. The laser power dependence, the temporal variation, and the identities of $C_7H_7^+$ were examined at 640 nm. The mechanism of unimolecular dissociation of iodotoluene radical cations is elucidated: the lowest barrier rearrangement channel leads exclusively to the formation of the benzyl cation, whereas the direct C-I cleavage channel yields the tolyl cations that rearrange to both benzyl and tropylium cations with dissimilar branching ratios among o-, m-, and p-isomers. With a two-photon energy of 3.87 eV at 640 nm, the direct C-I cleavage channel results in the product branching ratio, [tropylium cation]/[benzyl cation], in descending order, 0.16 for meta >0.09 for ortho >0.05 for para.

Radical Polymers and Organic Radical Battery

  • Nishide, Hiroyuki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.62-62
    • /
    • 2006
  • Based on the redox couples of a nitroxide radical, organic radical polymers were utilized as the electrode-active or charge-storage component for a secondary battery. We call a battery composed of the radical polymer electrode as "organic radical battery". Organic radical battery has several advantages: high capacity, high power-rate performance, long cycle ability, and environmentally-benign features. Synthesis and electrochemical studies of nitroxide polymers are described. Battery fabrication and cell performance are also reported.

  • PDF

Reactions of Two Isomeric Thiols with Thianthrene Cation Radical

  • Park, Hyun-Ju;Lee, Wang-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1335-1338
    • /
    • 2005
  • Thianthrene cation radical perchlorate ($Th^{+{{\cdot}}}{ClO_4}^-$) reacted readily with two isomeric thiols, benzylthiol (1) and 4-methylbenzenethiol (7) in an acetonitrile solution at room temperature. From the reaction of 1, the major products, N-benzylacetamide (4) and benzyl sulfide (5), are characteristic of benzyl carbocations while the minor one, benzyl disulfide (6) implies free radical component of the reaction. It is unprecedented that the formation of a benzyl carbocation was caused by the extrusion of sulfur atoms from benzyl sulfur cations (3). In contrast, from the reaction of 7, only p-tolyl disulfide (10) was obtained from both sulfur radicals and cations. In the reaction of 7 the thio-extrusion was not observed from the p-tolyl sulfur cation (9). A thianthrene cation radical ($Th^{+{{\cdot}}}$) was reduced quantitatively to thianthrene (Th) in both reactions.

Polymerization of Vinyl Monomers Initiated by Thianthrene Cation Radical with Potential Biological Activity

  • Lee, Beomgi;Kim, Seongsim;Park, Jaeyoung;Cheong, Hyeonsook;Noh, Ji Eun;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.127-130
    • /
    • 2012
  • Polymerization of vinyl monomers is promoted by thianthrene cation radical as a part of our research concerning the reactions of various agents with readily isolable, yet highly reactive species and elucidate the biological activity. Thianthrene cation radical initiated the homopolymerization and copolymerization of styrene and ethyl vinyl ether. The polymerization yields decreased as the concentration of phenylacetylene or diphenylethylene increased. Such polymereization by cationic thianthrene radical could provide some clues for the reaction in living animals. Comments on possible polymerization mechanisms were suggested.

Quantitative Determination of Acetone formed in the Thermal and Photochemical Decompositions of Azobisisobutyronitrile

  • Yoon, Heung-Sick;Kim ,Kyong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.5
    • /
    • pp.284-287
    • /
    • 1985
  • Cyanoisopropyl radical derived from azobisisobutyronitrile (AIBN) by either thermolysis or photolysis reacts with oxygen to give cyanoisopropylperoxy radical which then was converted to acetone and cyano radical and/or acetyl cyanide and methyl radical. Of these products, acetone formed was quantitatively determined by the addition of thianthrene cation radical perchlorate to the reaction mixture. The results showed that 55.7 mmol, 16.9 mmol, and 16.0 mmol of acetone were formed for 7 hours from 1 mol of AIBN at $82{\pm}1^{\circ}C$ in acetonitrile, carbon tetrachloride, and benzene, respectively. However, 22.2 mmol of acetone was formed from photolysis of 1 mmol of AIBN in acetonitrile. The value decreased to 13.2 mmol by bubbling argon into the solvent prior to photolysis.

Reactions of Thianthrene Cation Radical Perchlorate with Azo-bis-2-phenoxy-2-propane and Azo-bis-2-(p-nitrophenoxy)-2-propane

  • Lee, Jae-Moon;Kim, Kyong-Tae;Shin, Jyng-Hyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.358-361
    • /
    • 1985
  • Thianthrene cation radical perchlorate (1) reacted with azo-bis-2-phenoxy-2-propane (6) to give thianthrene (2), cisthianthrene-5,10-dioxide, 5-(p-hydroxyphenyl) thianthrenium perchlorate (10), acetone, phenol, and 5-(2-propenyl) thianthrenium perchlorate (11) when the mole trtio of 1 to 6 was 1:1. Among the products, 11 was a new compound. However, when the corresponding mole ratio was 5:1, 11 was not formed. Similar result was obtained for azo-bis-2-(p-nitrophenoxy)-2-propane.

Observation of Methyl Radical Recombination Following Photodissociation of CH3I at 266 nm by Time-Resolved Photothermal Spectroscopy

  • Suh, Myung-Koo;Sung, Woo-Kyung;Li, Guo-Sheng;Heo, Seong-Ung;Hwang, Hyun-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.318-324
    • /
    • 2003
  • A time-resolved probe beam deflection (PBD) technique was employed to study the energy relaxation dynamics of photofragments produced by photodissociation of $CH_3I$ at 266 nm. Under 500 torr argon environment, experimental PBD transients revealed two energy relaxation processes; a fast relaxation process occurring within an acoustic transit time (less than 0.2 ㎲ in this study) and a slow relaxation process with the relaxation time in several tens of ㎲. The fast energy relaxation of which signal intensity depended linearly on the excitation laser power was assigned to translational-to-translational energy transfer from the photofragments to the medium. As for the slow process, the signal intensity depended on square of the excitation laser power, and the relaxation time decreased as the photofragment concentration increased. Based on experimental findings and reaction rate constants reported previously, the slow process was assigned to methyl radical recombination reaction. In order to determine the rate constant for methyl radical recombination reaction, a theoretical equation of the PBD transient for a radical recombination reaction was derived and used to fit the experimental results. By comparing the experimental PBD curves with the calculated ones, the rate constant for methyl recombination is determined to be $3.3({\pm}1.0)\;{\times}\;10^6\;s^{-1}torr^{-1}$ at 295 ± 2 K in 500 torr Ar.