• Title/Summary/Keyword: Radiator

Search Result 434, Processing Time 0.031 seconds

Numerical Analysis on the Characteristics of Thermal Flow in an Automobile Radiator (자동차용 라디에이터 열유동 특성에 관한 수치해석)

  • Kang, Chang Won;Kim, Tae Joon;Lee, Chi Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.55-61
    • /
    • 2019
  • The purpose of this study was to numerically analyze the heat flow characteristics of an automotive radiator. Heat flow analyses were conducted on the cooling water and outdoor air of the radiator, as well as the temperature distribution of the cooling water after heat transfer. The results of the study revealed that neither heat transfer nor radiator volume was affected by the position of the inlet of cooling water. However, temperature distribution was affected by the position of both the inlet and outlet. In case of heat transfer, three models underwent about 158 kW of heat transfer. The difference in cooling water temperature was about $10^{\circ}C$. In case of pressure drop, the core external air side was reduced to about 1,375 Pa, and the internal cooling water side about 14,570 Pa.

The Study on the Corrosion Behavior of Al-alloy for Radiator (Radiator용 Al합금의 부식거동에 관한 연구)

  • 임우조;정기철;윤대영
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.135-139
    • /
    • 2002
  • Most of all the mechanical devices are becoming more high-speed and high-power as well as their used condition being more polluted. So, it is necessary for these devices to equip cooling system to overcome that kind of severe using condition. In this study, corrosion test was carried out in distilled and tap water for the investigation on the corrosion characteristics of Al-alloy that is using as material for radiator.

  • PDF

THERMAL ANALYSIS OF SURFACE HEAT PIPE INSTALLED PANEL OF GEOSTATIONARY SATELLITE (외장형 HEAT PIPE 가 장착된 정지궤도 위성 패널의 열해석)

  • Jun H.Y.;Kim J.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.8-13
    • /
    • 2006
  • The north panel of a geostationary satellite is used as one of the main radiators, on which communication equipment or bus equipment are installed. The thermal control of panel is designed by using embedded heat pipes and surface heat pipes (or external heat pipes) to spread out heat dissipated from equipment all over the radiator evenly and finally to reject the heat to the space through the radiator efficiently. This panel is also divided by several areas based on the operating temperature and dissipation of equipment in order to increase heat rejection capability of radiator. The thermal analysis is carried out for the hot case, Winter Solsitce EOL (End Of Life), in order to validate thermal design of the panel utilized 6 surface heat pipes and 8 embedded heat pipes. The sensitivity studies for the heat pipe failure case and no heat pipe case are performed and compared to its normal state. The heat transport capability of heat pipe is also obtained from these calculations.

A Study on efficiency improvement of BLDC motor for radiator cooling fan (자동차 Cooling Fan용 고효율 BLDC모터의 호율개선에 대한 연구)

  • Ahn, Young-Il;Park, Chang-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.44-46
    • /
    • 2003
  • Nowaday it is trend to be one cooling radiator and cooling fan from separate engine radiator and air condition radiator in cars. For the cooling fan is developed a electrical motor which is limited in size. The motor should be working in silence and have no electromagnetic Problem and high efficiency. In this paper will be proposed some parameters for improvement of the efficiency of a BLDC motor which is developed for the cooling system after theoretical and experimental investigation.

  • PDF

Radiator Cooling Fan System by Switched Reluctance Motor for Automobiles (SRM을 이용한 자동차용 Radiator 냉각팬 구동시스템)

  • Yoon, Yong-Ho;Kim, Jae-Moon;Park, Sang-Hoon;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.235-240
    • /
    • 2009
  • In automobile, the introduction of electronically commutated motors has been accompanied by a proliferation of electronic devices. With this proliferation of electronic devices, an emphasis has been placed on EMC issues. This paper is proposed to use SRM as a radiator cooling fan in automotive applications. To drive SRM, Energy efficient C-dump converter is applied. Energy efficient C-dump converter, derived from the conventional C-dump converter, is proposed as a switched reluctance motor (SRM) drive for automotive engine cooling application. It is verified more efficient than other converters through simulation and experiments. And also SRM is valid for automotive applications that have strict EMC standards. Simulation and experimental results obtained on a laboratory prototype are finally presented to evaluate the performance.

A Study on Radiator Support Member Manufacturing Technology by Hydroforming (Hydroforming을 이용한 Radiator Support Member의 제조기술에 관한 연구)

  • Sohn S. M.;Lee M. Y.;Lee S. Y.;Jo Y. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.44-48
    • /
    • 2001
  • Tube hydroforming technology has increased dramatically, mainly by automotive industry in europe and the americas. It is required tube formability, optimized with regard to tribological factors and specially designed die and presses. In this process has many important parameters as expansion ratio of a tube, axial feeding, internal pressure and preforming low pressure. The following paper discusses to combine forming factors and expectation of manufacture problem by hydroforming of automotive radiator support member.

  • PDF

Optimization of Radiator Position in an Internally Radiating Photobioreactor: A Model Simulation Study

  • Suh, In-Soo;Lee, Sun-bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.789-793
    • /
    • 2003
  • This study focused on the optimization of the illumination method for efficient use of light energies in a photobioreactor. In order to investigate the effect of radiator position, a model simulation study was carried out using Synechococcus sp. PCC 6301 and an internally radiating photobioreactor as a model system. The efficiency of light transfer in a photobioreactor was analyzed by estimating the average light intensity in a photobioreactor. The simulation result, indicate that there exists an optimal position of internal radiators, and that the optimal position varies with radiator number and cell concentration. When light radiators are placed at the optimal position, the average light intensity is about 30% higher than that obtained by placing radiators at the circumstance or center of a photobioreactor. The method presented in this work may be useful for improving light transfer efficiency in a photobioreactor.

Design of Loudspeaker using Composite Plate and Piezofilm Actuator (복합재료 평판과 압전필름 작동기를 이용한 저음용 평판 스피커 설계)

  • 황준석;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.124-129
    • /
    • 1999
  • In this study, a design method for the flat sound radiator is developed to make new sound radiator system, whose shape is much thinner than that of conventional loudspeaker. Piezofilm (PVDF) is used as actuators of flat sound radiator. To avoid the distortion of sound radiated from flat sound radiator, the frequency response of radiated sound to be flat is taken as the design objective. The electrode pattern and orientation angle of piezofilm actuator is optimized to satisfy the design objective. The formulation is based on the coupled finite element and boundary element method. Genetic algorithm is used in the optimization process, which is useful in the optimization of discrete design variables. Frequency response with optimized piezofilm actuator is made flat enough to satify the design objective. For the enhancement of sound power, double-layered piezofilm actuators are also considered. The sound power with double-layered actuator becomes larger than that with single-layered actuator as expected.

  • PDF

A Study on the Radiation Heat Transfer Characteristics of Liquid Droplet Radiator (액적방열기의 복사열전달 특성에 관한 연구)

  • 김금무;김용모;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.32-40
    • /
    • 1994
  • The radiative heat transfer analysis in particle layer has an inherent difficulty in treating the governing integro-differential equations, which are derived from the remote effects. Most of the existing analyses are limited to the one dimensional system, taking into account only absorption or isotropic scatting of solid particles. Fortunately, a new Monte Carlo Simulation method is recently developed to analyse multidimensional radiative heat transfer in particles with anisotropically scatting. By this method, the present study analyses the radiative heat transfer in dispersed particles through the numerous droplets in the liquid droplet radiator to develop a technique of liquid droplet radiator. Consequently, knows that the radiative heat flux in particle layer is influenced by exitinction coefficient, optical thickness and surface area of particles in the system.

  • PDF

A Design Method for Direction Selective Structural-acoustic Coupled Radiator (구조-음향 연성현상을 갖는 방사 방향을 가질 수 있는 방사체 설계방법)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.225-231
    • /
    • 2005
  • This paper presents a design method for the structural-acoustic coupled radiator that can emit sound in the desired direction. A coupled system that has a finite space and a semi-infinite space separated by two flexible walls and an opening is considered. An objective function is selected to maximize radiation power on a main axis and minimize a side lobe level. To get initial values, prediction of a pressure distribution on field points and radiation pattern of the structural-acoustic coupling system is shown at a coupled-resonant frequency. Three different optimization methods are adapted to design the coupled radiator. Pressure and intensity distribution of the designed radiator is presented.