• Title/Summary/Keyword: Radiative transfer model

Search Result 316, Processing Time 0.03 seconds

INWARD MOTIONS IN STARLESS CORES TRACED WITH CS (3-2) and (2-1) LINES

  • LEE CHANG WON;MYERS PHILIP C.;PLUME RENE
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.257-259
    • /
    • 2004
  • We compare the results of the surveys of starless cores performed with CS (2-1) and (3-2) lines to study inward motions in the cores. The velocity shifts of the CS(3-2) and (2-1) lines with respect to $N_2H^+$ are found to correlate well with each other and to have similar number distributions, implying that, in many cores, systematic inward motions of gaseous material may occur over a range of density of at least a factor ${\~}$4. Fits of the CS spectra to a 2-layer radiative transfer model in ten infall candidates suggest that the median effective line-of-sight speed of the inward-moving gas is ${\~}0.07 km\;s^{-l}$ for CS (3-2) and ${\~} 0.04 km\;s^{-l}$ for CS(2-1). Considering that the optical depth obtained from the fits is usually smaller in CS(3-2) than in (2-1) line, this may indicate that CS(3-2) usually traces inner, denser gas with greater inward motions than CS(2-1) implying that many of the infall candidates have faster infall toward the center. However, this conclusion may not be representative of all starless core infall candidates, due to the statistically small number analyzed here. Further line observations will be useful to test this conclusion.

HCN(1-0) OBSERVATIONS OF STARLESS CORES

  • SOHN J,;LEE C, W,;LEE H, M.;PARK Y.-S.;MYERS P. C.;LEE Y.;TAFALLA M.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.261-263
    • /
    • 2004
  • We present a progress report on HCN(1-0) line observations toward starless cores to probe inward motions. We have made a single pointing survey toward the central regions of 85 starless cores and performed mapping observations of 6 infall candidate starless cores. The distributions of the velocity difference between HCN(1-0) hyperfine lines and the optically thin tracer $N_2H^+$(1-0) are significantly skewed to the blue, meaning that HCN(1-0) frequently detects inward motions. Their skewness to the blue is even greater than that of CS(2-1) Lee et al., possibly implying more infall occurrence than CS(1-0). We identify 19 infall candidates by using several characteristics illustrating spectral infall asymmetry seen in HCN(1-0) hyperfine lines, CS(3-2), CS(2-1), $DCO^+(2-1)$ and $N_2H^+$ observations. The HCN(1-0) F(O-l) with the least optical depth usually shows a similar intensity distribution to that of $N_2H^+$ which closely traces the density distribution of the cores, indicating that HCN(1-0) is less chemically affected and so believed to reflect kinematics occurring in rather inner regions of the cores. Detailed radiative transfer model fits of the spectra are underway to analyze central infall kinematics in starless cores.

Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

  • Mahanthesh, Basavarajappa;Gireesha, Bijjanal Jayanna;PrasannaKumara, Ballajja Chandra;Shashikumar, Nagavangala Shankarappa
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1660-1668
    • /
    • 2017
  • The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

Simulation of flame propagation in suspension of coal particles (석탄입자가 존재하는 공기중에서의 화염전파에 관한 모사)

  • 윤길원;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.36-43
    • /
    • 1988
  • A two phase model for the simulation of flame propagation has been developed and applied to a mixture of coal air. The effects associated with changes in the initial coal partial equivalence ratio and the initial diameter of particles on the structure of laminar flame propagation have been studied qualitatively and quantitatively. Especially the flame structure, the burning velocity, and the thermal behavior were evaluated. It was found that the radiative heat transfer absolutely dominates over the conduction mode. The increase in particle size was seen to contribute to an obvious increase in burning velocity for fuel lean and stoichiometric mixture. But for fuel rich mixture, the burning velocity was found to exhibit a weaker dependence on particle size.

An adjustment of coefficients for SMAC using MODIS red band (MODIS 가시 채널을 사용한 SMAC 계수 개선)

  • Park, Soo-Jae;Lee, Chang-Suk;Yeom, Jong-Min;Lee, Ga-Lam;Pi, Kyoung-Jin;Han, Kyung-Soo;Kim, Young-Seup
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.254-259
    • /
    • 2009
  • In this study, Simplified Method for the Atmospheric Correction (SMAC) radiative transfer model (RTM) used to retrieve surface reflectance from MODIS Top Of Atmosphere (TOA) reflectance (MOD02). SMAC code provides coefficients which were previously yielded by Second Simulation of the Satellite Signal in the Solar Spectrum (6S) for each satellite sensor. We conducted error analysis of SMAC RTM using MOD02 over comparison with MODIS surface reflectance (MOD09) which was provided from 6S. It showed that low accuracy values such as, $R^2$ : 0.6196, Root Means Square Error (RMSE) : 0.00031, bias : - 0.0859. Thus sensitivity analysis of input parameters and coefficients was conducted to searching error sources. Coefficients about $\tau_p$ (average AOD) are more influence than any other coefficients of $\tau_{a550}$ (Aerosol Optical Depth at 550nm) from sensitivity test. Calibrated coefficients of $\tau_p$ from regression analysis were used to surface reflectance which showed that improve accuracy of surface reflectance ($R^2$ : 0.827, RMSE : 0.00672, bias : - 0.000762).

  • PDF

Dust Scattering Simulation in Taurus-Auriga-Perseus(TPA) Complex

  • Lim, Tae-Ho;Seon, Kwang-Il;Min, Kyung-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.88.1-88.1
    • /
    • 2011
  • We present the FIMS/SPEAR FUV continuum map of The Taurus - Auriga - Perseus (TPA) complex, which is one of the largest local association of dark clouds located in (l,b)~([152,180],[-28,0]). We also present the result of FUV dust scattering simulation, which is based on Monte Carlo Radiative Transfer(MCRT) technique. Before the simulation we generate the model cloud using Hipparcos 77834 stars and the calculation of their E(B-V). From the density-integrated image and the cross section image of the modeled cloud we confirmed that the Taurus cloud is located in ~130pc. The cloud north of the California nebula is known for its two layered structure and we confirm that using the cross section image of the modeled cloud. In our modeled cloud, that two clouds are located at ~130pc and at ~300pc, respectively. Over the whole region the result image of simulation is well correlated with the diffuse FUV observed with FIMS/SPEAR. The dense core of the Taurus cloud, however, is not revealed completely in the map.

  • PDF

Development of Aerosol Retrieval Algorithm Over Ocean Using FY-1C/1D Data

  • Xiuqing, Hu;Naimeng, Lu;Hong, Qiu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1255-1257
    • /
    • 2003
  • This study proposes a single-channel satellite remote sensing algorithm for retrieving aerosol optical thickness over global ocean using FY-1C/1D data. An efficient lookup table (LUT)method is adopted in this algorithm to generate apparent reflectance in channel 1 and channel 2 of FY-1C/1D over ocean. The algorithm scale the apparent reflectance in cloud-free conditions to aerosol optical thickness using a state-of-art radiative transfer model 6S with input of the relative spectral response of channel 1 and 2 of FY-1C/1D. Monthly mean composite maps of the aerosol optical thickness have been obtained from FY-1C/1D global area coverage data between 2001 and 2003. Aerosol optical thickness maps can show the major aerosol source which are located off the west coast of northern and southern Africa, Arabian Sea and India Ocean. These result is very similar to other satellite sensors such as AVHRR and MODIS in the location area of heavy aerosol optical thickness over global ocean. The algorithm have been used to FY-1D operational performance and it is the first operational aerosol remote sensing product in China.

  • PDF

An estimation of surface reflectance for Advanced Himawari Imager (AHI) data using 6SV

  • Seong, Noh-hun;Lee, Chang Suk;Choi, Sungwon;Seo, Minji;Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.67-71
    • /
    • 2016
  • The surface reflectance is essential to retrieval various indicators related land properties such as vegetation index, albedo and etc. In this study, we estimated surface reflectance using Himawari-8 / Advanced Himawari Imager (AHI) channel data. In order to estimate surface reflectance from Top of Atmosphere (TOA) reflectance, the atmospheric correction is necessary because all of the TOA reflectance from optical sensor is affected by gas molecules and aerosol in the atmosphere. We used Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) Radiative Transfer Model (RTM) to correct atmospheric effect, and Look-Up Table (LUT) to shorten the calculation time. We verified through comparison Himawri-8 / AHI surface reflectance and Proba-V S1 products. As a result, bias and Root Mean Square Error (RMSE) are calculated about -0.02 and 0.05.

On the Yellow Sand Detection using KOMPSAT OSMI Data (KOMPSAT OSMI 자료를 이용한 황사탐지)

  • 김영섭;박경원;서애숙
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.201-207
    • /
    • 2002
  • Radiative transfer model was used to detect the yellow sand using KOMPSAT-1/0SMI data. With OSMI and SeaWiFS data, spectrum analysis for spatial and channel were carried out to investigate the characteristics of sensor for the detection of yellow sand. It was compared and analyzed the optical depth of OSMI and SeaWiFS data. Spectral characteristics of x-axis is similar in 765 and 865nm according to spectral analysis for OSMI and SeaWiFS data. It is considered that band 7 and 8(765 and 865nm) of OSMI is suitable for detecting the yellow sand. Compared the yellow sand images by OSMI and MODIS, the data of OSMI are applicable to monitor the yellow sand phenomena. The optical depth of yellow sand event was about 0.8 with 1.0 maximum.

An improvement of Simplified Atmospheric Correction : MODIS Visible Channel

  • Lee, Chang-Suk;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.487-499
    • /
    • 2009
  • Atmospheric correction of satellite measurements is a major step to estimate accurate surface reflectance of solar spectrum channels. In this study, Simplified Method for the Atmospheric Correction (SMAC) radiative transfer model used to retrieve surface reflectance from MODIS (MODerate resolution Imaging Spectrometer) top of atmosphere (TOA) reflectance. It is fast and simple atmospheric correction method, so it uses for work site operation in various satellite. This study attempts a test of accuracy of SMAC through a sensitivity test to detected error sources and to improve accuracy of surface reflectance using SMAC. The results of SMAC as compared with MODIS surface reflectance (MOD09) was represented that low accuracy ($R^2\;=\;0.6196$, Root Means Square Error (RMSE) = 0.00031, bias = - 0.0859). Thus sensitivity analysis of input parameters and coefficients was conducted to searching error sources. Among the input parameters, Aerosol Optical Depth (AOD) is the most influence input parameter. In order to modify AOD term in SMAC code, Stepwise multiple regression was performed with testing and remove variable in three stages with independent variables of AOD at 550nm, solar zenith angle, viewing zenith angle. Surface reflectance estimation by using Newly proposed AOD term in the study showed that improve accuracy ($R^2\;=\;0.827$, RMSE = 0.00672, bias = - 0.000762).