• 제목/요약/키워드: Radiative Transfer Equation

검색결과 81건 처리시간 0.023초

밀폐공간내 화재에 의해 생성된 연소가스 분석 및 유동에 관한 연구 (A study on the Analysis of Combustion Gas and its Flow Induced by Fire in an Enclosure)

  • 추병길;조성곤
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.77-93
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened, it is divided by a vertical baffle projecting from ceiling. The solution procedure Includes the standard k- $\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM ) is used for the calculation of radiative heat transfer equation. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The velocity vectors, streamlines, and isothermal lines are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer In the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire.

  • PDF

PCB 구조변화가 전자장비 냉각에 미치는 영향에 관한 수치적 연구 (A Numerical Study on the Effect of PCB Structure Variation on the Electronic Equipment Cooling)

  • 박희용;박경우
    • 대한기계학회논문집
    • /
    • 제19권12호
    • /
    • pp.3329-3343
    • /
    • 1995
  • The interaction of mixed convection and surface radiation in a printed circuit board(PCB) is investigated numerically. The electronic equipment is modeled by a two-dimensional channel with three hot blocks. In order to calculate the turbulent flow characteristics, the low Reynolds number k-.epsilon. model which is proposed by Launder and Sharma is applied. The S-4 approximation is used to solve the radiative transfer equation. The effects of the Reynolds number and geometric configuration variation of PCB on the flow and heat transfer characteristics are analyzed. As the results of this study, it is found that the thermal boundary layer occured at adiabatic wall in case with thermal radiation included, and the effect of radiation is also found to be insignificant for high Reynolds numbers. It is found, as well, that the heat transfer increases as the Reynolds number and block space increase and the channel height decreases and the heat transfer of vertical channel is greater than that of horizontal channel.

장주기 변광성의 SiO 메이저 선 세기 변화 연구 : 메이저 펌핑 기작 (INTENSITY VARIATION OF THE SiO MASER LINE OF LONG PERIOD VARIABLES : MASER PUMPING MECHANISM)

  • 김은혁;이상각
    • 천문학논총
    • /
    • 제8권1호
    • /
    • pp.83-104
    • /
    • 1993
  • In principle, both radiation and collision are capable of pumping the SiO masers. In order to check which pumping mechanism is more efficient, we calculated the rate equation for our model including the 3 vibrational slates with 7 rotational states of each vibrational slate. Through solving the radiative transfer equation with the Sovolev approximation, we estimated the line profiles from an expanding envelope for several transitions. It is found that the collision works more efficiently than the radiation for the inversion in excited vibrational stales. However in an expanding envelope model we could not get the strong line intensity as observed one because the population inversion is possible only in a small restricted region. For the enough population inversion to get type observed maser intensity. the number density of SiO and hydrogen molecules should be up to about $2{\times}10^5\;cm^{-3}$ and $1{\times}10^9\;cm^{-3}$, respectively, and the inversion should be occured in the region of no Jess than 11014cm.

  • PDF

Numerical Simulation of Flow Field and Organism Concentration in a UV Disinfection Channel

  • Li, Chan;Deng, Baoqing;Kim, Chang-Nyung
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2816-2821
    • /
    • 2008
  • This paper investigates the flow field and organism concentration in a UV disinfection channel in which vertical ultraviolet lamps are arranged in a staggered configuration. Turbulence is described by low Reynolds number ${\kappa}-{\varepsilon}$ turbulence model and standard ${\kappa}-{\varepsilon}$ turbulence model, respectively. P-1 method has been employed to solve the radiative transfer equation. The obtained incident radiation is used to compute the inactivation term in the species equation. The CFD results are in good agreement with the existing experimental data for the UV channel. For the flow field, the low-Reynolds number ${\kappa}-{\varepsilon}$ model is superior to the standard ${\kappa}-{\varepsilon}$ model. The approach velocity has a significant effect on the disinfection efficiency. The organism concentration at the outlet decreases fast to a low inlet velocity.

  • PDF

비축대칭 대류열손실 경계조건하에서 원관내 복사에 관여하는 매질의 층류 열적 발달의 수치해석 (Analysis on the thermal development of radiatively participating pipe flow with nonaxisymmetric convective heat loss)

  • 김택영;백승욱
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.2995-3002
    • /
    • 1995
  • The cooling problem of the hot internal pipe flow has been investigated. Simultaneous conduction, convection, and radiation were considered with azimuthally varying convective heat loss at the pipe wall. A complex, nonlinear integro-differential radiative transfer equation was solved by the discrete ordinates method (or called S$_{N}$ method). The energy equation was solved by control volume based finite difference technique. A parametric study was performed by varying the conduction-to-radiation parameter, optical thickness, and scattering albedo. The results have shown that initially the radiatively active medium could be more efficiently cooled down compared with the cases otherwise. But even for the case with dominant radiation, as the medium temperature was lowered, the contribution of conduction became to exceed that of radiation.n.

태양대기모델 계산법 (CALCULATION METHODS OF SOLAR ATMOSPHERIC MODEL)

  • 김갑성
    • 천문학논총
    • /
    • 제15권spc2호
    • /
    • pp.65-71
    • /
    • 2000
  • We have investigated the numerical methods to calculate model atmosphere for the analysis of spectral lines emitted from the sun and stars. Basic equations used in our calculations are radiative transfer, statistical equilibrium and charge-particle conservations. Transfer equation has been solved to get emitting spectral line profile as an initial value problem using Adams-Bashforth-Moulton method with accuracy as high as 12th order. And we have calculated above non linear differential equations simultaneously as a boundary value problem by finite difference method of 3 points approximation through Feautrier elimination scheme. It is found that all computing programs coded by above numerical methods work successfully for our model atmosphere.

  • PDF

An Implementation of the Adaptive Ray Tracing Method in the Athena Code

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve C.
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.50.1-50.1
    • /
    • 2016
  • The incorporation of radiation from massive stars is essential for modeling the dynamics and chemistry of star-forming clouds, yet it is a computationally demanding task for three-dimensional problems. We describe the implementation and tests of radiative transfer module due to point sources on a three-dimensional Cartesian grid in the Eulerian MHD code Athena. To solve the integral form of the radiation transfer equation, we adopt a widely-used long characteristics method with spatially adaptive ray tracing in which rays are split when sampling of cells becomes coarse. We use a completely asynchronous communication pattern between processors to accelerate transport of rays through a computational domain, a major source of performance bottleneck. The results of strong and weak scaling tests show that our code performs well with a large number of processors. We apply our radiation hydrodynamics code to some test problems involving dynamical expansion of HII regions.

  • PDF

화염편 모델을 이용한 층류확산화염장의 매연 생성 및 산화과정 해석 (Flamelet Modelling of Soot Formation and Oxidation in a Laminar $CH_4-Air$ Diffusion Flame)

  • 김군홍;김후중;김용모
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.68-75
    • /
    • 2005
  • By utilizing a semi-empirical soot model, the applicability of the laminar flamelet concept fur simulating the formation and oxidation of soot in the laminar diffusion flame has been studied. The source terms for two transport equations of the soot formation and oxidation are calculated in the mixture fraction/scalar dissipation rate space for laminar flamelets and stored in a library. In this study, emphasis is given to the interaction associated with radiation and soot formation. The radiative heat loss is obtained by solving the radiative transfer equation using the unstructured grid finite volume method with the WSGGM. The calculated temperatures and soot volume fractions agree relatively well with the experimental data and the previous numerical results of Kaplan et al. using the detailed chemistry.

복사열과 부분열림이 자연대류에 미치는 영향에 관한 연구 (Natural Convection Coupled with Thermal Radiation within Partially Open Enclosure)

  • 노승균;김광선;이재효
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2999-3007
    • /
    • 1994
  • The unsteady numerical simulations have been presented for the laminar natural convection in a partially open compartment. Computations were performed within the domain of the compartment in order to show the thermal radiation and the partially opening effects on the flow fields and heat transfer characteristics. The results were shown for different Planck numbers(0.05~5) and opening ratios(0.25~0.75) being fixed with Ra=$10^5$ and Pr=0.71. Considering the flow which is buoyancy driven from the heated wall, and the buoyancy is not much affected by the further outside region from the opening, the numerical computations have been performed without an outer region by the particular boundary treatments on the flow velocity and temperature at the different partial openings. The confined numerical domain reduced the CPU time and the memory of computer. P-1 approximation of radiative transfer equation was employed with Marshak type boundary conditions along with the pseudo-black body approximation at the partial openings. The numerical results clearly show that the natural convective flow and heat transfer are much affected by increase of thermal radiation particularly from the initial state. When thermal radiation is not much affecting the flow ($PL{\le}1$), it was found that thermal radiation effects are almost negligible.

공기 다단 연소기 화염의 NO 발생특성에 관한 연구 (Investigation of NO Formation Characteristics in Multi Staged Air Combustor)

  • 김한석;안국영;백승욱;유명종
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1594-1605
    • /
    • 2001
  • In this study, a numerical simulation was developed which was capable of predicting the characteristics of NO formation in pilot scale combustor adopting the air-staged burner flame. The numerical calculation was constructed by means of establishing the mathematical models fur turbulence, turbulent combustion, radiation and turbulent nitric oxide chemistry. Turbulence was solved with standard k-$\xi$ model and the turbulent combustion model was incorporated using a two step reaction scheme together with an eddy dissipation model. The radiative transfer equation was calculated by means of the discrete ordinates method with the weighted sum of gray gases model for CO$_2$and H$_2$O. In the NO chemistry model, the chemical reaction rates for thermal and prompt NO were statistically averaged using the $\beta$ probability density function. The results were validated by comparison with measurements. For the experiment, a 0.2 MW pilot multi-air staged burner has been designed and fabricated. Only when the radiation was taken into account, the predicted gas temperature was in good agreement with the experimental one, which meant that the inclusion of radiation was indispensable for modeling multi-air staged gas flame. This was also true of the prediction of the NO formation, since it heavily depended on temperature. Subsequently, it was found that the multi-air staged combustion technique might be used as a practical tool in reducing the NO formation by controlling the peak flame temperature.