• Title/Summary/Keyword: Radiative Transfer

Search Result 586, Processing Time 0.022 seconds

Inverse Radiation Analysis of a Two-Dimensional Irregular Geometry Using Unstructured Triangular Meshes (비정렬 삼각 격자를 이용한 2 차원 비직교 형상에서의 역복사 해석)

  • Yi, Kyung-Joo;Baek, Seung-Wook;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.561-567
    • /
    • 2011
  • The inverse radiation analysis of a two-dimensional irregular configuration using unstructured triangular meshes is presented. In this study, an enclosure filled with an absorbing, emitting and scattering medium with diffusely emitting and reflecting opaque boundaries is considered. The finite volume method is applied to solve the radiative transfer equation in order to simulate the measured incident radiation values which are used as input data for the inverse analysis. The conjugate gradient method is adopted for the estimation of wall emissivities by minimizing the objective function at each iteration step. To verify the performance of the unstructured grid system, we compare the results with those using a structured grid system for the two-dimensional lopsided shape. The effect of measurement errors on the estimation accuracy is also investigated.

DEVELOPMENT AND VALIDATION OF LAND SURFACE TEMPERATURE RETRIEVAL ALGORITHM FROM MTSAT-1R DATA

  • Hong, Ki-Ok;Kang, Jeon-Ho;Suh, Myoung-Seok
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.293-296
    • /
    • 2008
  • Land surface Temperature (LST) is a very useful surface parameter for the wide range of applications, such as agriculture, numerical and climate modelling community. Whereas operational observation of LST is far from the needs of application community in the spatial Itemporal resolution and accuracy. So, we developed split-window type LST retrieval algorithm to estimate the LST from MTSAT-IR data. The coefficients of split-window algorithm were obtained by means of a statistical regression analysis from the radiative transfer simulations using MODTRAN 4 for wide range of atmospheric profiles, satellite zenith angle and lapse rate conditions including the surface inversions. The sensitivity analysis showed that the LST algorithm reproduces the LST with a reasonable quality. However, the LST algorithm overestimates and underestimates for the strong surface inversion and superadiabatic conditions especially for the warm temperature, respectively. And the performance of LST algorithms is superior when satellite zenith angle is small. The accuracy of the retrieved LST has been evaluated with the Moderate Resolution Imaging Spectroradiometer (MODIS) LST data. The validation results showed that the correlation coefficients and RMSE are about 0.83${\sim}$0.98 and 1.38${\sim}$4.06, respectively. And the quality of LST is significantly better during night and winter time than during day and summer. The validation results showed that the LST retrieval algorithm could be used for the operational retrieval of LST from MTSAT-IR and COMS(Communication, Ocean and Meteorological Satellite) data with some modifications.

  • PDF

STRENGTH OF THE RAMAN SCATTERED HE II EMISSION LINES IN SYMBIOTIC STARS AND PLANETARY NEBULAE

  • LEE HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.55-60
    • /
    • 2003
  • In Lee, Kang & Byun (2001) the discovery of Raman scattered 6545 A feature was reported in symbiotic stars and the planetary nebula M2-9. The broad emission feature around 6545 A is formed as a result of Raman scattering of He II n = 6 $\to$ n = 2 photons by atomic hydrogen. In this paper, we introduce a method to compute the equivalent width of He II $\lambda$ 1025 line and present an optical spectrum of the symbiotic star RR Telescopii as an example for a detailed illustration. In this spectrum, we pay attention to the broad H$\alpha$ wings and the Raman scattered He II 6545 feature. The broad Ha wings are also proposed to be formed through Raman scattering of continuum around Ly$\beta$ by Lee (2000), and therefore we propose that the equivalent width of the He II $\lambda$ 1025 emission line is obtained by a simple comparison of the strengths of the 6545 feature and the broad H$\alpha$ wings. We prepare a template H$\alpha$ wing profile from continuum radiation around Ly$\beta$ with the neutral scattering region that is supposed to be responsible for the formation of Raman scattered He II 6545 feature. Isolation of the 6545 feature that is blended with [N II] $\lambda$ 6548 is made by using the fact that [N II] $\lambda$ 6584 is always 3 times stronger than [N II] $\lambda$ 6548. We also fit the 6545 feature by a Gaussian which has a width 6.4 times that of the He II $\lambda$ 6527 line. A direct comparison of these two features for RR Tel yields the equivalent width $EW_{Hel025} = 2.3{\AA}$ of He II $\lambda$ 1025 line. Even though this far UV emission line is not directly observable due to heavy interstellar extinction, nearby He II lines such as He II $\lambda$ 1085 line may be observed using far UV space instruments, which will verify this calculation and hence the origins of various features occurring in spectra around H$\alpha$.

THE EFFECTS OF RADIAL HEAT SINK GEOMETRY AND SURFACE COATINGS ON THE LED COOLING PERFORMANCE FOR HIGH POWER LED LAMP (고출력 LED 램프 용 방사형 히트싱크의 형상 및 표면코팅이 LED 냉각성능에 미치는 영향에 대한 연구)

  • Kim, H.S.;Park, S.H.;Kim, D.;Kim, K.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • The purpose of this study is to investigate the cooling performance of radial heat sink used for high power LED lightings by natural convection cooling with surrounding air. Experimental and numerical analyses are carried out together. Parametric studies are performed to compare the effects of geometric parameters in radial heat sink such as the number of fins, fin height, fin length, and thickness of fin base as well as the surface coatings of radial heat sink. In this study, the cooling of 60 W LED lamp is examined with radiative heat transfer considered as well as natural convection. Numerical results show the optimum condition when the number of fin is 40, heat sink height is 120 mm, fin length is 15 mm, and fin base thickness is 3 mm. The difference in temperature of the LED metal PCB is within $1^{\circ}C$ between numerical analyses and experimental results. Also, the CNT coating on the heat sink surface is found to increase the cooling performance significantly.

Infrared Spectral Signatures of Dust by Ground-based FT-IR and Space-borne AIRS (지상 및 위성 고분해 적외스펙트럼 센서에서 관측된 황사 특성)

  • Lee, Byung-Il;Sohn, Eun-Ha;Ou, Mi-Lim;Kim, Yoon-Jae
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • The intensive dust observation experiment has been performed at Korea Global Atmosphere Watch Center (KGAW) in Anmyeon, Korea during each spring season from 2007 to 2009. Downward and upward hyper-spectral spectrums over the dust condition were measured to understand the hyper-spectral properties of Asian dust using both ground-based Fourier Transform Infrared Spectroscopy (FT-IR) and space-borne AIRS/Aqua. To understand the impact of the Asian dust, a Line-by-Line radiative transfer model runs to calculate the high resolution infrared spectrum over the wave number range of $500-500cm^{-1}$. Furthermore, the radiosonde, a $PM_{10}$ Sampler, a Micro Pulse Lidar (MPL), and an Aerodynamic Particle Sizer (APS) are used to understand the vertical profile of temperature and humidity and the properties of Asian dust like concentration, altitude of dust layer, and size distribution. In this study, we found the Asian dust distributed from surface up to 3-4 km and volume concentration is increased at the size range between 2 and $8{\mu}m$ The observed dust spectrums are larger than the calculated clear sky spectrums by 15~60K for downward and lower by around 2~6K for upward in the wave number range of $800-1200cm^{-1}$. For the characteristics of the spectrum during the Asian dust, the downward spectrum is revealed a positive slope for $800-1000cm^{-1}$ region and negative slope over $1100-1200cm^{-1}$ region. In the upward spectrum, slopes are opposed to the downward one. It is inferred that the difference between measured and calculated spectrum is mostly due to the contribution of emission and/or absorption of the dust particles by the aerosol amount, size distribution, altitude, and composition.

Simulated Radiances of the OSMI over the Oceans

  • Lim, Hyo-Suk;Kim, Yong-Seung;Lee, Dong-Han
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.43-48
    • /
    • 1998
  • Prior to launch, simulated radiances of the Ocean Scanning Multispectral Imager (OSMI) will be very useful to guess the real imagery of OSMI and to check the data processing system for OSMI. The data processing system for OSMI which is one sensor of Korea Mult i - Purpose Satellite (KOMPSAT) scheduled for launch in 1999 is being developed based on the SeaWiFS Data Analysis System (SeaDAS). Such a simulation should include the spectral bands, orbital and scanning characteristics of the OSMI and KOMPSAT spacecraft. The simulation is also very helpful for finding and preparing for problem areas before launch. This paper describes a method to create simulated radiances of the OSMI over the oceans. Our method for constructing a simulated OSMI imagery is to propagate a KOMPSAT orbit over a field of Coastal Zone Color Scanner (CZCS) pigment values and to use the values and atmospheric components to calculate total radiances. A modified Brouwer - Lyddane model with drag was used for the realistic orbit prediction, the CZCS pigment data were used to compute water - leaving radiances, and a variety of radiative transfer models were used to calculate atmospheric contributions to total radiances detected by OSMI. Imagery of the simulated OSMI total radiances for 6 nominal bands was obtained. As expected, water - leaving radiances were only a small fraction of total radiances and sun glint contaminations were observed near the solar declination. Therefore, atmospheric correction is very important in the calculation of pigment concentration from total radiances. Because the imagery near the sun's glitter pattern is virtually useless and must be discarded, more advanced mission planning will be required.

  • PDF

Computer Simulation of Temperature Parameter for Diamond Formation by using Hot- Filament Chemical Vapor Deposition (온도 매개 변수의 컴퓨터 시뮬레이션을 통한 HF-CVD를 이용한 다이아몬드 증착 거동 분석)

  • Song, Chang-Won;Lee, Yong-Hui;Choe, Su-Seok;Hwang, Nong-Mun;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.54-54
    • /
    • 2018
  • To optimize the deposition parameters of diamond films, the temperature, pressure, and distance between the filament and the susceptor need to be considered. However, it is difficult to precisely measure and predict the filament and susceptor temperature in relation to the applied power in the hot filament chemical vapor deposition (HFCVD) system. In this study the temperature distribution inside the system was numerically calculated for the applied powers of 12, 14, 16 and 18 kW. The applied power needed to achieve the appropriate temperature at a constant pressure and other conditions was deduced, and applied to actual experimental depositions. The numerical simulation was conducted using the commercial computational fluent dynamics software, ANSYS-FLUENT. To account for radiative heat-transfer in the HFCVD reactor, the discrete ordinate (DO) model was used. The temperatures of the filament surface and the susceptor at different power levels were predicted to be 2512 ~ 2802 K, and 1076 ~ 1198 K, respectively. Based on the numerical calculations, experiments were performed. The simulated temperatures for the filament surface were in good agreement with experimental temperatures measured using a 2-color pyrometer. The results showed that the highest deposition rate and the lowest deposition of non-diamond was obtained at a power of 16 kW.

  • PDF

AN ANALYSIS OF INFRARED IMAGES OF JUPITER IMPACTED BY P/SHOEMAKER-LEVY 9

  • KIM YONG HA;SUNG KIYUN;KIM SANG JOON;COCHRAN W. D.;LESTER D. F.;TRAFTON L.;CLARK B. E.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.245-253
    • /
    • 1996
  • We have analyzed infrared (IR) images of Jupiter which was observed at the McDonald Observatory, Texas, U.S.A., during the P/SHoemaker-LEvy 9 (SL9) impact period and about one week after the last impact. The IR images were obtained on the 2.7m telescope using a NICMOS array with filters to isolate the $1.5{\mu}m\;NH_3\; band,\;the\;2.3{\mu}m\;CH_4\;band,\;the\;2.12{\mu}m\;H_2\;S(0)$ pressure-induced absorption, and the continua at $1.58{\mu}m\;and\;2.0{\mu}m$ (short K-band). All images except those with the $1.58{\mu}m$ continuum filter show bright impact sites against the relatively dark Jovian disk near the impact latitude of about $45^{\circ}$ S. This implies that dusts originated from the impacts reflect the solar radiation at high altitudes before absorbed by stratospheric $CH_4,\;NH_3 \;or\;H_2$. The impact sites observed with the $2.3{\mu}m$ filter are conspicuously bright against a very dark background. The morphology of impact sites, G, L, and H at 2.3 and $2.12{\mu}m$ filters shows clearly an asymmetric structure toward the incident direction of the comet fragments, in agreement with the studies of visible impact images obtained with the Hubble Space Telescope. Comparisons of reflectances of G, L, and H sites with simple radiative transfer models suggest that optically thick dust layers were formed at high altitudes at which methane absorption attenuates incoming sunlight only by about $1\%$. The dust layers in these sites seem to form at about the same altitude regardless of the magnitude of the impacts, but they appear to descend gradually after the impacts. The dust layers have optical depths of 2-5, according to the models.

  • PDF

POLARIZATION OF THOMSON SCATTERED LINE RADIATION FROM BROAD ABSORPTION LINE OUTFLOWS IN QUASARS

  • Baek, Kyoung-Min;Bang, Jeong-Hoon;Jeon, Yeon-Kyeong;Kang, Suna;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • About 10 percent of quasars are known to exhibit deep broad absorption troughs blueward of prominent permitted emission lines, which are usually attributed to the existence of outflows slightly above he accretion disk around the supermassive black hole. Typical widths up to 0.2c of these absorption roughs indicate the velocity scales in which special relativistic effects may not be negligible. Under he assumption of the ubiquity of the broad absorption line region in quasars, the broad emission line flux will exhibit Thomson scattered components from these fast outflows. In this paper, we provide our Monte Carlo calculation of linear polarization of singly Thomson scattered line radiation with the careful considerations of special relativistic effects. The scattering region is approximated by a collection of rings that are moving outward with speeds ${\upsilon}=c{\beta}<0.2c$ near the equatorial plane, and the scattered line photons are collected according to its direction and wavelength in the observer's rest frame. We find that the significantly extended red tail appears in the scattered radiation. We also find that the linear degree of polarization of singly Thomson scattered line radiation is wavelength-dependent and hat there are significant differences in the linear degree of polarization from that computed from classical physics in the far red tail. We propose that the semi-forbidden broad emission line C III]1909 may be significantly contributed from Thomson scattering because this line has small resonance scattering optical depth in the broad absorption line region, which leads to distinct and significant polarized flux in this broad emission line.

Estimation of Aerosol Vertical Profile from the MODIS Aerosol Optical Thickness and Surface Visibility Data (MODIS 에어러솔 광학두께와 지상에서 관측된 시정거리를 이용한 대기 에어러솔 연직분포 산출)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • This study presents a modeling of aerosol extinction vertical profiles in Korea by using the Moderate Resolution Imaging Spectro-radiometer(MODIS) derived aerosol optical thickness(AOT) and ground based visibility observation data. The method uses a series of physical equations for the derivation of aerosol scale height and vertical profiles from MODIS AOT and surface visibility data. The modelled results under the standard atmospheric condition showed small differences with the standard aerosol vertical profile used in the radiative transfer model. Model derived aerosol scale heights for two cases of clean(${\tau}_{MODIS}=0.12{\pm}0.07$, visibility=$21.13{\pm}3.31km$) and hazy atmosphere(${\tau}_{MODIS}=1.71{\pm}0.85$, visibility=$13.33{\pm}5.66km$) are $0.63{\pm}0.33km$ and $1.71{\pm}0.84km$. Based on these results, aerosol extinction profiles can be estimated and the results are transformed into the KML code for visualization of dataset. This has implications for atmospheric environmental monitoring and environmental policies for the future.