• Title/Summary/Keyword: Radiative Transfer

Search Result 590, Processing Time 0.029 seconds

Effect of Deuterated Solvents on the Excited State Photophysical Properties of Curcumin

  • Barik, A.;Goel, N.K.;Priyadarsini, K.I.;Mohan, Hari
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.95-99
    • /
    • 2004
  • Optical absorption and emission studies have been carried out to understand the effect of deuterium on the solvent dependent photophysical properties of curcumin in deuterated solvents such as $CDCl_3,\;(CD_3)_2SO,\;(CD_3)_2CO,\;CD_3OD\;and\;CD_3CN$. Optical absorption spectral studies showed that there is no significant shift in absorption maxima compared to the non-deuterated solvent. The fluorescence maxima shows significant shift with polarity of solvent but not much affected by the deuteration. The fluorescence quantum yield of curcumin increased marginally in almost all the deuterated solvents, indicating reduction in the non-radiative pathways. The fluorescence decay was biexponential in all the solvents and the average fluorescence lifetime was not much affected with deuteration, but showed decrease with increasing solvent polarity. Based on these studies, it is concluded that intermolecular hydrogen transfer is only partially responsible for the excited state deactivation of curcumin.

  • PDF

Analysis on the thermal development of radiatively participating pipe flow with nonaxisymmetric convective heat loss (비축대칭 대류열손실 경계조건하에서 원관내 복사에 관여하는 매질의 층류 열적 발달의 수치해석)

  • ;;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2995-3002
    • /
    • 1995
  • The cooling problem of the hot internal pipe flow has been investigated. Simultaneous conduction, convection, and radiation were considered with azimuthally varying convective heat loss at the pipe wall. A complex, nonlinear integro-differential radiative transfer equation was solved by the discrete ordinates method (or called S$_{N}$ method). The energy equation was solved by control volume based finite difference technique. A parametric study was performed by varying the conduction-to-radiation parameter, optical thickness, and scattering albedo. The results have shown that initially the radiatively active medium could be more efficiently cooled down compared with the cases otherwise. But even for the case with dominant radiation, as the medium temperature was lowered, the contribution of conduction became to exceed that of radiation.n.

An Immobilized Fenton Catalyst$^1$

  • Song, Pill-Soon;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.3
    • /
    • pp.113-114
    • /
    • 1980
  • Lumichrome (7,8-dimethylalloxazine) exhibits two fluorescence emission maxima at 440 and 540 nm in pyridine-dioxane. These emission band maxima are attributable to radiative decays from the excited states of lumichrome and its flavin tautomer, 7,8-dimethylisoalloxazine, respectively. The growth of the latter can be followed upon excitation of the former with a 2-nanosecond light pulse generated from the nitrogen plasma discharge lamp. The excited state tautomerism results from proton transfer from N-1 to N-10 position during the lifetime of the lumichrome singlet excited state. The rate depends on the concentration of general base, pyridine, and it is an order of magnitude slower than diffusion-controlled processes.

Radar Remote Sensing of Soil Moisture and Surface Roughness for Vegetated Surfaces

  • Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.427-436
    • /
    • 2008
  • This paper presents radar remote sensing of soil moisture and surface roughness for vegetated surfaces. A precise volume scattering model for a vegetated surface is derived based on the first-order radiative transfer technique. At first, the scattering mechanisms of the scattering model are analyzed for various conditions of the vegetation canopies. Then, the scattering model is simplified step by step for developing an appropriate inversion algorithm. For verifying the scattering model and the inversion algorithm, the polarimetric backscattering coefficients at 1.85 GHz, as well as the ground truth data, of a tall-grass field are measured for various soil moisture conditions. The genetic algorithm is employed in the inversion algorithm for retrieving soil moisture and surface roughness from the radar measurements. It is found that the scattering model agrees quite well with the measurements. It is also found that the retrieved soil moisture and surface roughness parameters agree well with the field-measured ground truth data.

Radiometric Characteristics of KOMPSAT EOC Data Assessed by Simulating the Sensor Received Radiance

  • Kim, Jeong-Hyun;Lee, Kyu-Sung;Kim, Du-Ra
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.281-289
    • /
    • 2002
  • Although EOC data have been frequently used in several applications since the launch of the KOMPSAT-1 satellite in 1999, its radiometric characteristics are not clear due to the inherent limitations of the on-board calibration system. The radiometric characteristics of remotely sensed imagery can be measured by the sensitivity of radiant flux coming from various surface features on the earth. The objective of this study is to analyze the radiometric characteristics of EOC data by simulating the sensor- received radiance. Initially, spectral reflectance values of reference targets were measured on the ground by using a portable spectre-radiometer at the EOC spectrum. A radiative transfer model, LOWTRAN, then simulated the sensor-received radiance values of the same reference target. By correlating the digital number (DN) extracted from the EOC image to the corresponding radiance values simulated from LOWTRAN, we could find the radiometric calibration coefficients for EOC image. The radiometric gain coefficients of EOC are very similar to those of other panchromatic optical sensors.

Lyα spectrum regulated by the cold interstellar medium surrounding H II regions

  • Seon, Kwang-il;Kang, Jun-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.73.5-73.5
    • /
    • 2019
  • Studying the amount and kinematics of circumand intergalactic medium (CGM and IGM) is key to understanding the role of feedback and environment (cold streams and galactic winds) in the evolution of galaxies. In particular, $Ly{\alpha}$ emission line has been utilized to investigate the density structure and kinematics of the (most abundant) H I gas in the CGM and IGM around galaxies. Therefore, modeling $Ly{\alpha}$ radiative transfer through multiphase interstellar medium (ISM), CGM and IGM is crucial in understanding the galaxy evolution. As discussed in Kakiichi & Dijkstra (2018), most $Ly{\alpha}$ RT effects would occur on interstellar scales. This is because the main source of $Ly{\alpha}$ photons would be H II regions, which are in most cases, if not all, surrounded by "cold" photo-dissociation regions. However, most $Ly{\alpha}$ RT studies have been performed in the CGM and IGM environments with T ~ 10,000K. In this talk, we present how the $Ly{\alpha}$ RT effect in the cold ISM with T ~ 100 K regulates the $Ly{\alpha}$ spectral properties.

  • PDF

Nature of Fe II fluorescent lines in Luminous Blue Variables

  • Lee, Jae-Joon;Chang, Seok-Jun;Seon, Kwang-il;Kim, Hyun-Jeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2020
  • Luminous blue variables (LBVs) are massive evolved stars that show unpredictable photometric and spectral variation. It is generally assumed that they undergo one or more of large eruptions. We have obtained high dispersion NIR spectra of several LBVs with Immersion GRating INfrared Spectrometer (IGRINS). One notable feature in their IGRINS spectra is the existence of broad lines (~ a few hundred km/s) with unusual boxy profile. They are fluorescent lines of Fe II by Lyman α photons in the stellar wind. However, modeling of these lines with radiative transfer code CMFGEN predicts much weaker line strength. We propose that incorporating broadening of Lyman α line by scattering processes in dense wind can enhance the Fe II fluorescent lines. We further discuss how these Fe II fluorescent lines can be used to characterize massive LBV wind.

  • PDF

THE CLASSIFICATION AND PHYSICS OF SUPERNOVAE

  • Wheeler, J. Craig
    • Publications of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.169-177
    • /
    • 1993
  • Observed spectra of supernovae allow the empirical classification of supernovae into two basic categories, Type I with little or no evidence of hydrogen, and Type II with obvious evidence for hydrogen. The broad class of Type I can be subdivided depending on whether helium or silicon and other intermediate mass elements is observed. Understanding the physical processes that underlie these classifications---the progenitor evolution. the explosion mechanism, and end products---requires calculation of radiative transfer and model spectra. While most Type II occur in evolved massive stars that undergo core collapse. some may span the dividing line between degenerate and non-degenerate carbon burning and involve both core collapse and thermonuclear explosion. Type Ia are still most plausibly explained as thermonuclear explosions in carbon/oxygen white dwarfs in binary systems. Type Ib reveal helium atmospheres and are probably the result of core collapse in the helium core of a massive star that has lost its hydrogen envelope to a binary companion or to a wind. Type Ic supernovae are probably related to Type Ib but have also lost their helium envelope to reveal a mantle rich in oxygen.

  • PDF

Lyα Polarization: An Implication to the Lyα Blobs

  • Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.30.2-30.2
    • /
    • 2021
  • The extended Lyα nebulae (also known as Lyα blobs or LABs) observed at z=2-6 can provide clues to galaxy formation in the early universe. The connection of LABs with the overdensities of compact Lyα emitters suggests that they are associated with matter density peaks in the universe and thus likely to evolve into the present-day groups and clusters of galaxies. However, the mechanism powering the extended Lyα emission in LABs is remained controversial. The detection of polarization signals that follow the theoretically predicted trend is interpreted as strong evidence supporting that the LABs are caused primarily by the resonance scattering of Lyα originating from star-forming galaxies and AGNs. However, Trebitsch et al. (2016) claimed that the radial profile of polarization could be better explained by the scenario in which Lyα photons are produced in the cooling gas surrounding galaxies and then self-scattered by the gas, rather than by the scattering scenario of photons originating from the central galaxies. In this presentation, using LaRT, a state-of-art Lyα radiative transfer code, it is demonstrated that the observed polarization pattern can be reproduced even with the scattering scenario.

  • PDF

SPECTRAL LINE ANALYSIS/MODELING (SLAM) I: PVANALYSIS

  • Yusuke, Aso;Jinshi Sai (Insa Choi)
    • Publications of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.27-38
    • /
    • 2024
  • Line observations of young stellar objects (YSOs) at (sub)millimeter wavelengths provide essential information of gas kinematics in star and planet forming environments. For Class 0 and I YSOs, identification of Keplerian rotation is of particular interest, because it reveals presence of rotationally-supported disks that are still being embedded in infalling envelopes and enables us to dynamically measure the protostellar mass. We have developed a python library SLAM (Spectral Line Analysis/Modeling) with a primary focus on analyses of emission line data at (sub)millimeter wavelengths. Here, we present an overview of the pvanalysis tool from SLAM, which is designed to identify Keplerian rotation of a disk and measure the dynamical mass of a central object using a position-velocity (PV) diagram of emission line data. The advantage of this tool is that it analyzes observational features of given data and thus requires few computational time and parameter assumptions, in contrast to detailed radiative transfer modelings. In this article, we introduce the basic concept and usage of this tool, present an application to observational data, and discuss remaining caveats.