• Title/Summary/Keyword: Radiative Transfer

Search Result 587, Processing Time 0.028 seconds

The comparison of radial and axial flow porous burners from viewpoint of output radiative heat transfer and emissions

  • Tabari, N. Ghiasi;Astaraki, M.R.;Arabi, A.H.
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.285-295
    • /
    • 2012
  • In this paper, two types of porous burners with radial and axial flow have been modeled numerically and compared. For this purpose, governing equations were solved one-dimensionally for methane-air premix gas. The mechanism used in simulating combustion phenomenon was 15 stage reduced mechanism based on GRI3.0. In order to compare the two burners, the inlet flow rate and fuel-air ratio have been assumed equal for the two burners. The results of the study indicated that reduction in speed and increase in cross-section area in the direction of flow have a considerable influence on the behavior of radial burner in comparison to axial burner. Regarding temperature distribution inside the burner, it was observed that the two above mentioned factors can be influential in temperature of flame propagation region. Also, regarding distribution of CO and NO emission, the results indicate that the porous radial burner has lower emissions in comparison to the axial once. The output radiative heat transfer efficiency of the two burners was also compared and in this case also even the radial porous burner was found to be preferable.

Radiative Heat Transfer in Radiatively Particpating Finite Cylindrical Media - Exact and P-N Solutions - (복사에 관여하는 유한 원통형 매질에서의 복사열 전달)

  • 서인수;손종관;임승욱;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1428-1437
    • /
    • 1988
  • An analysis of radiative heat transfer has been conducted on axisymmetric finite cylindrical media. It is assumed that the temperature in the media is uniformly distributed and the boundaries are diffusely emitting and reflecting at a constant temperature. The scattering phase function is represented by the delta-Eddington approximation to account for highly forward scattering by particulates just as in the combustion system. Exact numerical solutions are obtained by Gaussian quadrature method and compared with P-1 and P-3 approximation solutions to verify their engineering application limit. The effects of optical thickness, scattering albedo, wall emissivity and aspect ratio are investigated. The results show that P-3 approximation is found to be in good agreement with the exact solution.

THE KRAMERS-HEISENBERG FORMULA AND THE GUNN-PETERSON TROUGH

  • Bach, Kiehunn;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.5
    • /
    • pp.187-193
    • /
    • 2014
  • Recent cosmological observations indicate that the reionized universe may have started at around z = 6, where a significant suppression around $Ly{\alpha}$ has been observed from the neutral intergalactic medium. The associated neutral hydrogen column density is expected to exceed $10^{21}cm^{-2}$, where it is very important to use the accurate scattering cross section known as the Kramers-Heisenberg formula that is obtained from the fully quantum mechanical time-dependent second order perturbation theory. We present the Kramers-Heisenberg formula and compare it with the formula introduced in a heuristic way by Peebles (1993) considering the hydrogen atom as a two-level atom, from which we find a deviation by a factor of two in the red wing region far from the line center. Adopting a representative set of cosmological parameters, we compute the Gunn-Peterson optical depths and absorption profiles. Our results are quantitatively compared with previous work by Madau & Rees (2000), who adopted the Peebles approximation in their radiative transfer problems. We find deviations up to 5 per cent in the Gunn-Peterson transmission coefficient for an accelerated expanding universe in the red off-resonance wing part with the rest wavelength ${\Delta}{\lambda}{\sim}10{\AA}$.

Radiative transfer In General grid: RIG

  • Lee, Seok-Ho;Park, Young-Sun;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.82.1-82.1
    • /
    • 2011
  • We present a new code for solving non-LTE radiative transfer problems in a general grid (RIG). RIG develops from RATRAN code (Hogerheijde & van der Tak 2000) using the Accelerated Monte-Carlo method, and it can cope with line overlap effect among multiple molecular and atomic species. In this algorithm we make grids in arbitrary coordinates adequate to the problem, but, on the other hand, photons propagate in the Cartesian coordinates. For spherical, cylindrical and other well defined coordinate, the problem of tracing photon's path reduces to solving simple quadratic equations. For example, the outflow in the star formation have high dynamic range in scales from a few AU to ~ 0.1 pc and have also cylindrical symmetry. So, we have used (r, ${\alpha}$) coordinate system, where r is the distance from the origin and ${\alpha}$ is z/ R2 in the cylindrical coordinate of (R,z). The (r, ${\alpha}$) coordinate realizes the density - power function of r - and temperature distributions of the problems with smaller numbers of grid than the cylindrical coordinate does, and the former consumes less time to solve the problems than the latter.

  • PDF

Development of an RF Signal Level Prediction Simulator for Radiowave Propagation in Natural Environments (비행체의 원격신호측정을 위한 전파환경을 고려한 RF 수신신호 예측 시뮬레이터 개발)

  • Hyun, Jong-Chul;Kim, Sang-Keun;Oh, Yi-Sok;Seo, Dong-Soo;Kim, Heung-Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.725-733
    • /
    • 2010
  • A simulator is proposed in this paper for predicting the RF signal level after propagating over sea and land surfaces. Various sea and land types and transmit/receive antenna patterns, as well as the locus of the transmit antenna, are considered for this simulator. At first, microwave reflection characteristics of various sea surfaces have been computed, based on an empirical formula which is developed in this study for the relation between the sea surface roughness and wind speed. Then, microwave reflections from land surfaces such as forests, agricultural areas, and bare surfaces, are computed using the first-order vector radiative transfer theory. Finally, the signal paths over sea and land surfaces are found using the ray tracing technique and the digital elevation model, and the signal level received by a receiving antenna is computed by the using the reflection coefficients of sea and land surfaces and the signal paths.

Soot Formation and Combustion in Turbulent Flames (난류 화염 내에서의 매연 입자의 생성및 재연소)

  • 정종수;신현동;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.962-978
    • /
    • 1989
  • A new model of the combustion rates of soot particle in turbulent flames has been suggested. This model applies the combustion rate of soot particles in laminar flames and uses local time-averaged quantities in order to consider the effect of the chemical reaction on the soot combustion in turbulent flames. The proposed rate equation has been tested for two propane-air turbulent round-jet diffusion flames and gives better predictions for the soot concentration field of two flames than the model previously used, especially in low temperature regions. A modified Monte carlo Method for analyzing radiative heat transfer of a flame also has been suggested and tested, which reveals good results.

Effects of Additive and Preheat on the Partially Premixed $CH_4-Air$ Counter Flow Flames Considering Non-gray Gas Radiation

  • Park Won-Hee;Chang Hee-Chul;Kim Tae-Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.242-250
    • /
    • 2006
  • Detailed structures of the counterflow flames formed for different inlet fluid temperatures and different amount of additives are studied numerically. The detailed chemical reactions are modeled by using the CHEMKIN-II code. The discrete ordinates method and the narrow band based WSGGM with a gray gas regrouping technique (WSGGM-RG) are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the counterflow flames. The results compared with those obtained by using the SNB model show that the WSGGM-RG is very successful in modeling the counterflow flames with non-gray gas mixture. The numerical results also show that the addition of $CO_2\;or\;H_2O$ to the oxidant lowers the peak temperature and the NO concentration in flame. But preheat of fuel or oxidant raises the flame temperature and the NO production rates. $O_2$ enrichment also causes to raise the temperature distribution and the NO production in flame. And it is found that the $O_2$ enrichment and the fuel preheat were the major parameters in affecting the flame width.

Retrieval of land Surface Temperature from MTSAT-1R

  • Kwak, Seo-Youn;Suh, Myoung-Seok;Kang, Jeon-Ho;Kwak, Chong-Heum;Kim, Chan-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.385-388
    • /
    • 2006
  • The land surface temperature (LST) can be defined as a weighted average temperature of components which constitute a pixel. The coefficients of split-window algorithm for MTSAT-1R were obtained by means of a statistical regression analysis from radiative transfer simulations using MODTRAN 4.0 for a wide range of atmospheric, satellite viewing angle (SVA) and lapse rate conditions. 6 types of atmospheric profile data imbedded in the MODTRAN 4 are used for the radiative transfer simulations. The RMSE is clearly larger on warm and humid profiles than cold and dry profiles, especially when the satellite viewing angle and lapse rate are large. The derivation of LST equations according to the atmospheric profiles clearly decreased the RMSE without regard to the SVA and lapse rate. The bias and RMSE are decreased as the more controls factors included. This preliminary result indicates that the characteristics of atmosphere, SVA and lapse rate should be included in the LST equation.

Photoisomerization of Symmetric Carbocyanines

  • 민형식;강유남;박정희
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.747-753
    • /
    • 1998
  • The phoisomerization process of symmetric carbocyanine dyes such as 3,3'-diethyloxadicarbocyanine iodide (DODCI), 3,3'-diethylthiadicarbocyanine iodide (DfDCI), 1,1'-diethyl-2,2'-dicarbocyanine iodide (DDI), 1,1'-diethyl-2,2'-carbocyanine iodide (DCI), and cryptocyanine (1,1'-diethyl-4,4'-carbocyanine) iodide (CCI) have been studied by measuring the steady state and time resolved fluorescence spectra and the ground-state recovery profiles. The steady-state fluorescence spectrum of photoisomer as a function of concentration and excitation wavelength provides the evidence that the fluorescence of photoisomer is formed by the radiative energy transfer from the normal form and the quantum yield for the formation of photoisomer is increased by decreasing the excitation wavelength. The fluorescence decay profiles have been measured by using the time correlated single photon counting (TCSPC) technique, showing a strong dependence on the concentration and the detection wavelength, which is due to the formation of excited photoisomers produced either by the radiative energy transfer from the non-nal form or by absorbing the 590 nm laser pulse. We first report the fluorescence decay time of photoisomers for these cyanine dyes. The experimental results are explained by introducing the semiempirical calculations. The ground state recovery profiles of DTDCI, DDI, and CCI normal forms have been measured, showing that the recovery time from the singlet excited state is similar with the fluorescence decay time.

A Computational Study on the Cooling Performance of a Near Infrared Radiative Heating System (근적외선 가열 시스템의 냉각 성능에 대한 수치적인 연구)

  • Yoo, Keun-Pyo;Han, Minsub;Kim, Jae-Duck;Choi, Won-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.289-296
    • /
    • 2013
  • A near infrared (NIR) heating system has advantages over the conventional convection-based systems, in terms of heating uniformity and energy efficiency. When it is over-heated during its operation, the radiation lamp gets blackened, and the life of the radiation module becomes severely limited. The heat transfer system in the module is based on a high operating-temperature, and the radiation makes it difficult to analyze in detail the reliability issue, with an experimental approach alone. We developed a numerical heat-transfer model of the NIR heating system. We applied a ray-tracing method on the radiative heat transport, and a finite volume method on the conductive and convective systems, respectively. The cooling performance of the system is presented, based on the energy and flow distributions in the module. The factors that directly affect the module life are analyzed, such as the surface temperatures of the lamp glass and the reflector, and design improvements are discussed.