Radiative transfer In General grid: RIG

  • Lee, Seok-Ho (Astronomy Program, Dept. of Physics & Astronomy, Seoul National University) ;
  • Park, Young-Sun (Astronomy Program, Dept. of Physics & Astronomy, Seoul National University) ;
  • Lee, Jeong-Eun (Dept. of Astronomy and Space Science, Kyung Hee University.)
  • Published : 2011.04.05

Abstract

We present a new code for solving non-LTE radiative transfer problems in a general grid (RIG). RIG develops from RATRAN code (Hogerheijde & van der Tak 2000) using the Accelerated Monte-Carlo method, and it can cope with line overlap effect among multiple molecular and atomic species. In this algorithm we make grids in arbitrary coordinates adequate to the problem, but, on the other hand, photons propagate in the Cartesian coordinates. For spherical, cylindrical and other well defined coordinate, the problem of tracing photon's path reduces to solving simple quadratic equations. For example, the outflow in the star formation have high dynamic range in scales from a few AU to ~ 0.1 pc and have also cylindrical symmetry. So, we have used (r, ${\alpha}$) coordinate system, where r is the distance from the origin and ${\alpha}$ is z/ R2 in the cylindrical coordinate of (R,z). The (r, ${\alpha}$) coordinate realizes the density - power function of r - and temperature distributions of the problems with smaller numbers of grid than the cylindrical coordinate does, and the former consumes less time to solve the problems than the latter.

Keywords