Three-dimensional distributions of longwave radiation flux for the April-September 1998 period are generated from radiative transfer calculations using the GEWEX Asian Monsoon Experiment (GAME) reanalysis temperature and humidity profiles and International Satellite Cloud Climatology Project (ISCCP) cloudiness as inputs to understand the effect of cloud radiative forcing in the monsoon season. By subtracting the heating of the clear atmosphere from the cloudy radiative heating, cloud-induced atmospheric radiative heating has been obtained. Emphasis is placed on the impact of horizontal gradients of the cloud-generated radiative heating on the Asian monsoon. Cloud-induced heating exhibits its maximum heating areas within the Indian Ocean and minimum heating over the Tibetan Plateau, which establishes the north-south oriented differential heating gradient. Considering that the differential heating is a ultimate source generating the atmospheric circulation, the cloud-induced heating gradient established between the Indian Ocean and the Plateau can enhance the strength of the north-south Hadley-type monsoon circulation. Cooling at cloud top and warming at cloud bottom, which are the vertical distributions of cloud-induced heating, can exert on the monsoon circulation by altering the atmospheric stability.
Radiative heating of a liquid rocket base plane due to plume emission is numerically investigated. Calculation of flow and temperature fields around rocket nozzle precedes and thereby realistic plume shape and temperature distribution inside the plume are obtained. Based on the calculated temperature field, radiative transfer equation is solved by discrete ordinate method. The averaged radiative heat flux reaching the base plane is about $5kW/m^2$ at the flight altitude of 10.9km. This value is small compared with radiative heat flux caused by constant-temperature (1500K) plume emission, but it is not negligibly small. At higher altitude (29.8km), view factor between the babe plane and the exhaust plume is increased due to the increased expansion angle of the plume. Nevertheless, the radiative heating disappears since the base plane is heated to high temperature (above 1000K) due to convective heat transfer.
In this study, the glass fiber drawing from a silica preform in the furnace for the optical fiber manufacturing process is numerically simulated by considering the radiative heating of cylindrically shaped preform. The one-dimensional governing equations of the mass, momentum, and energy conservation for the heated and softened preform are solved as a set of the boundary value problems along with the radiative transfer approximation between the muffle tube and the deformed preform shape, while the furnace heating is modeled by prescribing the temperature distribution of muffle tube. The temperature-dependent viscosity of silica plays an important role in formation of preform neck-down profile when the glass fiber is drawn at high speed. The calculated neck-down profile of preform and the draw tension are found to be reasonable and comparable to the actual results observed in the optical fiber industry. This paper also presents the effects of key operating parameters such as the muffle tube temperature distribution and the fiber drawing speed on the preform neck-down profile and the draw tension. Draw tension varies drastically even with the small change of furnace heating conditions such as maximum heating temperature and heating width, and the fine adjustment of furnace heating is required in order to maintain the appropriate draw tension of 100~200 g.
Journal of the Korean Society of Propulsion Engineers
/
v.9
no.3
/
pp.85-91
/
2005
Radiative heating of a liquid rocket base plane due to plume emission is numerically investigated. Calculation of flow and temperature fields around rocket nozzle precedes and thereby realistic plume shape and temperature distribution inside the plume are obtained. Based on the calculated temperature field, radiative transfer equation is solved by discrete ordinate method. With the sample rocket plume, the averaged radiative heat flux reaching the base plane is calculated about 5 kw/m$^{2}$ at the flight altitude of 10.9 km. This value is small compared with radiative heat flux caused by constant-temperature (1500 K) plume emission, but it is not negligibly small. At higher. altitude (29.8km), view factor between the base plane and the exhaust plume is increased due to the increased expansion angle of the plume. Nevertheless, the radiative heating disappears since the base plane is heated to high temperature (above 1000 K due to convective heat transfer.
Multi plume effects on the base heating have been Investigated with a CFD program. As the flight altitude increases, the plume expansion angle increases regardless of the single or clustered engine. The plume interaction of the clustered engine makes a high temperature thermal shear in the center of four plumes. At low altitude, the high temperature shear flow stays in the center of plumes, but it increases up to engine base with the increasing altitude. At high altitude, the flow from plume to base and the flow from base into outer free stream are supersonic, which transfers the high heat in the center of plumes to the base region. The radiative heat of the clustered engine varies from 220 kW/m² to 469 kW/m² with increasing altitude while those of the single engine are 10 kW/m² and 43.7 kW/m². And the base temperature of the clustered engine varies from 985K to 1223K, and those of the single engine are 483K and 726K. This big radiative heat of clustered engine can be explained by the active high temperature base flow and strong plume interactions.
Measuring radiative loss from the solar chromospheric lines like Ha line, Ca II 8542 line helps to infer the exact amount of non-thermal heating in the solar atmosphere. By courtesy of the multi-layer spectral inversion, it is able to determine the radiative loss in the upper and lower chromosphere. Consequently, we found that the radiative loss is around 10 kW/m2, which is consistent with previous studies. Comparing the radiative loss at the upper and lower chromosphere, the loss at the lower chromosphere is larger than that of upper chromosphere and tends to spread all over the field of view while the loss in the upper chromosphere tends to be localized. We hope to find a hint for specific non-thermal heating process to explain the chromospheric radiative loss.
The system considered in this model consists of a single, semi- transparent, diesel fuel droplet, which is immobile in the heating area and surrounded by a quiescent air. A uniform external radiation field surrounds the droplet. Results from mathematical simulation suggest that because of the higher surface temperature, the external radiative heating of the droplet can promote an earlier ignition of the fuel vapour/air mixture. The radiative heating of the droplet increases the mass transfer from the droplet to the surrounding gas-phase, thus, decreasing the heterogeneity of the fuel droplet/air system.
The vertical profiles of radiative flux and heating rate at King Sejong Station in West Antarctica were calculated with radiative transfe model by Chou and Suarez (1999) and Chou et al (2001). To run this model, the profiles of temperature, mixing ratios of water vapor and ozone at King Sejng Station were derived from ECMWF Reanalysis data. The surface temperature and albedo were also derived from NCEP/NCAR Reanalysis and CERES data. The radiative flux strongly depends on the cloud optical path length that was calculated using the measured W-h data and model by Chou and Lee(1996). Durins the period of $2000{\sim}2001$ (12 and 18 UTC), the correlation coefficient between calculated and measured downward solar fluxes at surface was 0.90 and the coefficient for downward longwave flux was 0.61. The calculated net heating rates of surface layer decreased during the same period, the trend of which was in accordance with the decrease of measured temperature.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.40
no.9
/
pp.737-744
/
2012
The finite volume method for radiation is applied for the analysis of radiative base heating by SE and PE of the aircraft exhaust plume. The exhaust plume is considered as an absorbing, emitting, and scattering medium, while the base plane is assumed to be cold and black. The radiative properties of non-gray gases are obtained through the WSGGM, and the particle is modelled as spheres. The present method is validated by comparing the results with those of the backward Monte-Carlo method and then the radiative base heating characteristics are analyzed by changing such various parameters as particle concentration, temperature, and scattering phase function. The results show that the radiative heat flux coming into the base plane decreases with altitude and distance, but it increases as the particle temperature increases. The forward scattering of particles increases PE while it decreases SE.
This study presents a numerical model to analyze dynamic thermal behavior of a hot chuck designed for flip-chip bonders. The hot chuck of concern is a heater which has been specifically developed for accomplishing high-speed and ultra-precision soldering. The characteristic features are radiative heat source and the heating tool made of a material of high thermal diffusivity. A physical modeling has been conducted for the network of heat transport. A simplified finite volume model is deviced to simulate time-dependent thermal behavior of the heating tool on which soldering is achieved. The reliability of the proposed numerical model is verified experimentally. A series of numerical tests illustrate the usefulness of the numerical model in design analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.