• Title/Summary/Keyword: Radiation-tolerant

Search Result 43, Processing Time 0.026 seconds

Salt-Responsive Genes in Salt Tolerant Rice Mutants Revealed through Microarray Analysis

  • Song, Jae Young;Kim, Dong Sub;Lee, Myung-Chul;Kang, Si-Yong;Kim, Jin-Baek;Lee, Kyung Jun;Yun, Song Joong
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.325-334
    • /
    • 2010
  • Transcriptional regulation in response to salt in mutant lines was investigated using oligonucleotide microarrays. In order to characterize the salt-responsive genes in rice, the expression profiles of transcripts that responded to salt-treatment were monitored using the microarrays. In the microarray analysis, among 37,299 reliable genes, 5,101, 2,758 and 2,277 genes were up-regulated by more than 2-fold using the salt treatment, while the numbers of down-regulated genes were 4,619, 3,234, and 1,878 in the WT, ST-495, and ST-532, respectively. From genotype changes induced by gamma ray mutagenesis, 3,345 and 2,397 genes were up-regulated, while 2,745 and 2,075 genes were down-regulated more than 2-fold in the two untreated mutants lines compared with untreated WT, respectively. A total of 3,108 and 2,731 genes were up-regulated more than 2-fold, while 3,987 and 3,660 genes were down-regulated by more than 2-fold in the salt treatment of the two mutants lines compared with the salt treated WT, respectively. The expressions of membrane transporter genes such as OsAKT1, OsKUP, and OsNAC increased more severely in ST-495 and ST-532 than in the WT. The expressions of the proline accumulation related genes such as OsP5CS and OsP5CR were also markedly increased in the salt tolerant mutants when compared to the WT plant.

Selection and Characterizations of Gamma Radiation-Induced Submergence Tolerant Line in Rice

  • Lee In-Sok;Kim Dong-Sub;hua Jin;Kang Si-Yong;Song Hi-Sup;Lee Sang-Jae;Lim Yong-Pyo;Lee Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.173-179
    • /
    • 2003
  • The combination of a radiation technique with an in vitro culture system was appiled to develop submergence tolerant rice. The 3,000 $M_3$ lines with an average 80 percent of fertile grain were utilized for the selection of submergence tolerance. Salt tolerant lines were selected based on high plant height, root length and root number after submergence in plastic pots. Of the lines tested, the tolerant line (403-6) showed a dramatic difference in morphological traits under submergence compared to its original variety (Dongjinbyeo). It was suggested that genetic variations between the original variety and $M_3$-403-6 did exist. The levels of $\alpha$-amylase and alcohol dehydrogenase activities were significantly increased in the mutant line compared to its original variety. The mutant with greater tolerance showed less electrolyte leakage indicating a greater membrane integrity and better survival. Also, this line was much more resistant to a salt stress of $1.25\%$ than the original variety. The proline level of the line was significantly (p<0.01> higher than that of the original variety. The relationships between the inhibition of growth caused by stress and the physiological changes in the plant cell were discussed.

Fault Tolerant Control of a Servo Manipulator for Teleoperation by Control Allocation to Redundant Joints (여유 자유도에 대한 조종력 배분을 통한 원격작업용 서보 매니퓰레이터의 내고장 제어)

  • 진재현;박병석;안성호;윤지섭
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.235-245
    • /
    • 2004
  • In this paper, fault tolerant mechanisms are presented for a servo manipulator system designed to operate in a hot cell. A hot cell is a sealed and shielded room to handle radioactive materials, and it is dangerous for people to work in the hot cell. So, remote operations are necessary to handle the radioactive materials in the hot cell. KAERI has developed a servo manipulator system to perform such remote operations. However, since electric components such as servo motors may fail by radiation, fault tolerant mechanisms have to be considered. For fault tolerance of the servo manipulator system, duplication mechanism increasing the reliability of the transport's driving motors and reconfiguration algorithm accommodating the slave's motor failure have been presented. The reconfiguration algorithm recovering the end effector's motion in spite of one motor's failure is based on control allocation redistributing redundant axes. The constrained optimization method and pseudo inverse method have been adopted for control allocation. Simulation examples and real test results have been presented to verify the Proposed methods.

Fault tolerant design of a Servo Manipulator System for Hot Cell Operation (핫셀용 서보 매니퓰레이터 시스템의 내고장 설계)

  • Jin, Jae-Hyun;Park, Byung-Suk;Ahn, Sung-Ho;Yoon, Ji-Sup;Jung, Jae-Hoo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1464-1469
    • /
    • 2003
  • In this paper, fault tolerant mechanisms are presented for a servo manipulator system designed to operate in a hot cell. A hot cell is a sealed and shielded room to handle radioactive materials, and it is dangerous for people to work in the hot cell. So, remote operations are necessary to handle the radioactive materials in the hot cell. KAERI has developed a servo manipulator system to perform such remote operations. However, since electric components such as servo motors are weakened with radiation, fault tolerant mechanisms have to be considered. For fault tolerance of the servo manipulator system, hardware and software redundancy has been considered. In the case of hardware, radioactive resistant electric components such as cables and connectors have been adopted and motors driving a transport have been duplicated. In case of software, a reconfiguration algorithm accommodating one motor's failure has been developed. The algorithm uses redundant axes to recover the end effector's motion in spite of one motor's failure.

  • PDF

Evaluation of Salt Tolerance in Sorghum (Sorghum bicolor L.) Mutant Population

  • Ye-Jin Lee;Baul Yang;Woon Ji Kim;Juyoung Kim;Soon-Jae Kwon;Jae Hoon Kim;Joon-Woo Ahn;Sang Hoon Kim;Haeng-Hoon Kim;Chang-Hyu Bae;Jaihyunk Ryu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.38-38
    • /
    • 2023
  • Sorghum (Sorghum bicolor L.) is a promising biomass crop with a high lignocellulose content. This study aimed to select high salt-tolerance sorghum lines for cultivation on reclaimed land. Using 7-day seedlings of the sorghum population consisted of 71 radiation-derived mutants (M2 to M6) and 33 genetic resources, survival rate (SR), plant height (PH), root length (RL), fresh weight (FW), and chlorophyll content (CC) were measured for two weeks after 102 mM (0.6%) NaCl treatment. Furthermore, the characteristics of the sorghum population were confirmed using correlation analysis, PCA (principal component analysis), and the FCE (fuzzy comprehensive evaluation) method. Under 102 mM NaCl conditions, SR ranged from 4.9 (IS645-200-6) to 82.4% (KLSo79125-200-1), with an average of 49.9%. PH varied from 7.5 (Mesusu-100-2) to 33.2 cm (DINE-A-MITE-100-2-10), with an average of 20.4 cm. RL ranged from 1.0 (IS645-200-1) to 17.0 cm (30-100-2), with an average of 7.7 cm. FW varied from 0.1 (IS645-200-6) to 4.5 g/plant (DINE-A-MITE-100-2-10), with an average of 2.1 g/plant. CC ranged from 0.9 (DINE-A-MITE-100-2-2) to 3.1 mg/g (IS12937), with an average of 1.7 mg/g. An overall positive correlation, with SR and FW (r = 0.86, P < 0.01), and FW and CC (r = 0.79, P < 0.01), was shown by correlation analysis. Among the five traits, two principal components were extracted by PCA analysis. PC1 was significantly associated with FW, while PC2 was highly involved with RL. To evaluate the salt tolerance level of the sorghum population when an FCE based on trait data was performed, MFV (membership function value) was 0.68. As a result of compiling the MFV of each line, eight lines with MFV > 0.68 were selected. Ultimately, the radiation-derived mutant lines, DINE-A-MITE-100-2-10 and DINE-A-MITE-100-2-12 were selected as salt-tolerant sorghum lines. The results are expected to inform salt-tolerant sorghum breeding programs, and the high salt-tolerance sorghum lines might be advantageous for cultivation on reclaimed land.

  • PDF

Characterization of a Gamma Radiation-Induced Salt-Tolerant Silage Maize Mutant (방사선 유도 내염성 증진 사료용 옥수수 돌연변이체 특성 분석)

  • Cho, Chuloh;Kim, Kyung Hwa;Choi, Man-Soo;Chun, Jaebuhm;Seo, Mi-Suk;Jeong, Namhee;Jin, Mina;Son, Beom-Young;Kim, Dool-Yi
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.318-325
    • /
    • 2019
  • Salt stress is a significant factor limiting growth and productivity in crops. However, little is known about the response and resistance mechanism to salt stress in maize. The objective of this research was to develop an enhanced salt-tolerant silage maize by mutagenesis with gamma radiation. To generate gamma radiation-induced salt-tolerant silage maize, we irradiated a KS140 inbred line with 100 Gy gamma rays. Salt tolerance was determined by evaluating plant growth, morphological changes, and gene expression under NaCl stress. We screened 10 salt-tolerant maize inbred lines from 2,248 M2 mutant populations and selected a line showing better growth under salt stress conditions. The selected 140RS516 mutant exhibited improved seed germination and plant growth when compared with the wild-type under salt stress conditions. Enhanced salt tolerance of the 140RS516 mutant was attributed to higher stomatal conductance and proline content. Using whole-genome re-sequencing analysis, a total of 328 single nucleotide polymorphisms and insertions or deletions were identified in the 140RS516 mutant. We found that the expression of the genes involved in salt stress tolerance, ABP9, CIPK21, and CIPK31, was increased by salt stress in the 140RS516 mutant. Our results suggest that the 140RS516 mutant induced by gamma rays could be a good material for developing cultivars with salt tolerance in maize.

Antioxidants Stimulated by UV-B Radiation in Rice Seedling

  • Sung, Jwa-Kyung;Lee, Seung-Hwan;Lee, Su-Yeon;Shim, Myung-Bo;Kim, Tae-Wan;Song, Beom-Heon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.116-120
    • /
    • 2004
  • In order to investigate low molecular antioxidants synthesized by enhanced UV-B radiation, we used the seedlings of two rice varieties. Woonjangbyeo, UV-tolerant, and Hwajoongbyeo, UV-susceptible, were subjected under supplemental UV-B irradiation. When rice seedlings were irradiated with UV light for short period, biosynthesis of total phenolic compound, ascorbate and glutathione were momently reduced. With an increase of UV-B radiation, however, those were slightly synthesized. The content of lipid peroxides in UV-challenged rice leaves was considerably increased after 12 hrs of UV-B treatment. Lipoxygenase activity under supplemental UV-B radiation was differently responded on rice varieties.

Simulation-based analysis of total ionizing dose effects on low noise amplifier for wireless communications

  • Gandha Satria Adi;Dong-Seok Kim;Inyong Kwon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.568-574
    • /
    • 2024
  • The development of radiation-tolerant radio-frequency (RF) systems can be a solution for applications in extreme radiation environments, such as nuclear power plant monitoring and space exploration. Among the crucial components within an RF system, the low noise amplifier (LNA) stands out due to its vulnerability to TID effects, mainly relying on transistors as its main devices. In this study, the TID effects in the LNA using standard 0.18 ㎛ complementary metal oxide semiconductors (CMOS) technology are estimated and analyzed. The results show that the LNA can withstand absorbed radiation up to 100 kGy. The S21, S11, noise figure (NF), stability (K), and linearity of the third input intercept point (IIP3) slightly shifted from the initial values of 0.8312 dB, 0.793 dB, 0.00381 dB, 1.34406, and 2.36066 dBm, respectively which are still comparable to the typical performances. Moreover, the standard 0.18 ㎛ technology has demonstrated its radiation tolerance, as it exhibits negligible performance degradation in the conventional LNA even when exposed to radiation levels up to 100 kGy. In this context, simulation approach offers a means to predict the TID effects and estimate the radiation exposure limit for electronic devices, particularly when transistors are used as the primary RF components.

Different Physiological Response to Salt in Salt Tolerant Rice Mutants Induced by Gamma-Mutagenesis

  • Jang, Duk-Soo;Song, Mira;Kim, Sun-hee;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Kang, Si-Yong;Kim, Wook;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.259-266
    • /
    • 2011
  • When plants undergo stress, Reactive oxygen species (ROS) which remove bad elements such as mildew and virus is activated in plant body. However, if ROS is excessively increased, plant will be harmed itself by destruction of cell and signal system and phenomenon of lipid peroxidation. In order to identify content of lipid peroxidation and activity of some enzymes scavenging ROS, phenotypical and physiological analysis was performed with two mutant lines, Till-II-877 and Till-II-894, comparing with cv. Dongan (WT). In phenotype analysis, two mutant lines give to well-conditioned growth better than WT in since 5 days after salt treatment. In enzyme activities, there was a modest difference in the content of catalase (CAT) and peroxidase (POD) between Till-II-877 and Till-II-894, two mutant lines showed high levels in CAT contents than WT. However, they express low levels in POD contents. In MDA analysis, the content of Till-II-877 was higher than that of WT, but Till-II-894 was lower. This result indicates that two mutants have different mechanism against salt stress.

Development of underwater 3D shape measurement system with improved radiation tolerance

  • Kim, Taewon;Choi, Youngsoo;Ko, Yun-ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1189-1198
    • /
    • 2021
  • When performing remote tasks using robots in nuclear power plants, a 3D shape measurement system is advantageous in improving the efficiency of remote operations by easily identifying the current state of the target object for example, size, shape, and distance information. Nuclear power plants have high-radiation and underwater environments therefore the electronic parts that comprise 3D shape measurement systems are prone to degradation and thus cannot be used for a long period of time. Also, given the refraction caused by a medium change in the underwater environment, optical design constraints and calibration methods for them are required. The present study proposed a method for developing an underwater 3D shape measurement system with improved radiation tolerance, which is composed of commercial electric parts and a stereo camera while being capable of easily and readily correcting underwater refraction. In an effort to improve its radiation tolerance, the number of parts that are exposed to a radiation environment was minimized to include only necessary components, such as a line beam laser, a motor to rotate the line beam laser, and a stereo camera. Given that a signal processing circuit and control circuit of the camera is susceptible to radiation, an image sensor and lens of the camera were separated from its main body to improve radiation tolerance. The prototype developed in the present study was made of commercial electric parts, and thus it was possible to improve the overall radiation tolerance at a relatively low cost. Also, it was easy to manufacture because there are few constraints for optical design.