DOI QR코드

DOI QR Code

Simulation-based analysis of total ionizing dose effects on low noise amplifier for wireless communications

  • Received : 2023.08.07
  • Accepted : 2023.10.22
  • Published : 2024.02.25

Abstract

The development of radiation-tolerant radio-frequency (RF) systems can be a solution for applications in extreme radiation environments, such as nuclear power plant monitoring and space exploration. Among the crucial components within an RF system, the low noise amplifier (LNA) stands out due to its vulnerability to TID effects, mainly relying on transistors as its main devices. In this study, the TID effects in the LNA using standard 0.18 ㎛ complementary metal oxide semiconductors (CMOS) technology are estimated and analyzed. The results show that the LNA can withstand absorbed radiation up to 100 kGy. The S21, S11, noise figure (NF), stability (K), and linearity of the third input intercept point (IIP3) slightly shifted from the initial values of 0.8312 dB, 0.793 dB, 0.00381 dB, 1.34406, and 2.36066 dBm, respectively which are still comparable to the typical performances. Moreover, the standard 0.18 ㎛ technology has demonstrated its radiation tolerance, as it exhibits negligible performance degradation in the conventional LNA even when exposed to radiation levels up to 100 kGy. In this context, simulation approach offers a means to predict the TID effects and estimate the radiation exposure limit for electronic devices, particularly when transistors are used as the primary RF components.

Keywords

Acknowledgement

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2022M3F3A2A01072855, 2021M3C1C3097674 and RS-2022-00144419).

References

  1. D. Shin, C.H. Kim, P. Park, I. Kwon, Influence and analysis of a commercial ZigBee module induced by gamma rays, Nucl. Eng. Technol. 53 (5) (2021) 1483-1490, https://doi.org/10.1016/j.net.2020.11.017. 
  2. O. Ridge, U.S.N.R. Commission, Assessment of Wireless Technologies and Their Application at Nuclear Facilities Assessment of Wireless Technologies and Their Application at Nuclear Facilities, 2004. 
  3. C. Lee, G. Cho, T. Unruh, S. Hur, I. Kwon, Integrated circuit design for radiation-hardened charge-sensitive amplifier survived up to 2 MRAD, Sensors 20 (10) (2020), https://doi.org/10.3390/s20102765. 
  4. M. Kumar, J.S. Ubhi, S. Basra, A. Chawla, H.S. Jatana, Total ionizing dose hardness analysis of transistors in commercial 180 nm CMOS technology, Microelectron. J. 115 (2021), https://doi.org/10.1016/j.mejo.2021.105182. 
  5. M. Manghisoni, L. Ratti, V. Re, V. Speziali, G. Traversi, A. Candelori, Comparison of ionizing radiation effects in 0.18 and 0.25 ㎛ CMOS technologies for analog applications, IEEE Trans. Nucl. Sci. 50 (2003) 1827-1833, https://doi.org/10.1109/TNS.2003.820767. 
  6. J.R. Schwank, M.R. Shaneyfelt, D.M. Fleetwood, J.A. Felix, P.E. Dodd, P. Paillet, V. Ferlet-Cavrois, Radiation effects in MOS oxides, IEEE Trans. Nucl. Sci. 55 (4) (2008) 1833-1853, https://doi.org/10.1109/TNS.2008.2001040. 
  7. D.M. Fleetwood, Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices, IEEE Trans. Nucl. Sci. 60 (3) (2013) 1706-1730, https://doi.org/10.1109/TNS.2013.2259260. 
  8. D.J. Allstot, X. Li, S. Shekhar, Design Considerations for CMOS Low-Noise Amplifiers, 2004 IEEE Radio Frequency Integrated Circuits (RFIC) Systems, Digest of Papers, Forth Worth, TX, USA, 2004, pp. 97-100, https://doi.org/10.1109/RFIC.2004.1320538.
  9. G. Boeck, Design of RF-CMOS Integrated Circuits for Wireless Communications, 2008 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, Tel-Aviv, Israel, 2008, pp. 1-6, https://doi.org/10.1109/COMCAS.2008.4562799. 
  10. M. Jhabvala, Radiation hardened PMOS process with ion implanted threshold adjust, IEEE Trans. Nucl. Sci. 26 (1) (1979) 971-975, https://doi.org/10.1109/TNS.1979.4329753. 
  11. Y. Cao, P. Leroux, M. Steyaert, Radiation-tolerant delta-sigma time-to-digital converters, in: Analog Circuits and Signal Processing, Springer, Cham, 2015. 
  12. M. Manghisoni, L. Ratti, G. Traversi, Radiation effects on the noise parameters of a 0.18 ㎛ CMOS technology for detector front-end applications, Nucl. Phys. B 125 (2003) 4-5, https://doi.org/10.1016/SO920-5632(03)02280-l. 
  13. J.D. Cressler, H.A. Mantooth, Extreme Environment Electronics, CRC Press, 2012. 
  14. M. Cardenas-Juarez, M.A. Diaz-Ibarra, U. Pineda-Rico, A. Arce, E. Stevens-Navarro, On Spectrum Occupancy Measurements at 2.4 GHz ISM Band for Cognitive Radio Applications, 2016 International Conference on Electronics, Communications and Computers (CONIELECOMP), Cholula, Mexico, 2016, pp. 25-31, https://doi.org/10.1109/CONIELECOMP.2016.7438547. 
  15. Q. Kalhoro, M.A. Kalhoro, S. Abbasi, K. Khoumabti, Analysis of Femtocells Deployment with Different Air-Interfaces. UKSim2010 - UKSim 12th International Conference on Computer Modelling and Simulation, 2010, pp. 439-443, https://doi.org/10.1109/UKSIM.2010.87. 
  16. S. Park, W. Kim, Design of a 1.8 GHz low noise amplifier for RF front-end in a 0.8 ㎛ CMOS technology, IEEE Trans. Consum. Electron. 47 (1) (2001). 
  17. A.A. Roberts, D.G.N. Rani, S. Rajaram, Design and optimization of feedforward noise cancelling complementary metal oxide semiconductor LNA for 2.4 GHz WLAN applications, Inst. Eng. Technol. 13 (6) (2019) 908-919. 
  18. M. Bozanic, S. Sinha, Milimeter-Wave Low Noise Amplifiers, Springer, Cham, 2018. 
  19. C.H. Chang, M. Onabajo, Analysis and demonstration of an IIP3 improvement technique for low-power RF low-noise amplifiers, IEEE Trans. Circ. Syst.: Regul. Pap. 65 (3) (2018) 859-896, https://doi.org/10.1109/TCSI.2017.2781369. 
  20. T. Riad, Q. Jing, A Nonlinear S-Parameters Behavioural Model for RF LNAs, 2nd Asia Symposium on Quality Electronic Design, ASQED), 2010, pp. 106-111, https://doi.org/10.1109/ASQED.2010.5548227. 
  21. H.S. Nalwa, Silicon-Based Materials and Devices, Two-Volume Set: Materials and Processing, Properties and Devices, first ed., ACADEMIC PRESS, Cambridge, MA, USA, 2001. 
  22. V. Re, M. Manghisoni, L. Ratti, V. Speziali, G. Traversi, Total ionizing dose effects on the noise performances of a 0.13 ㎛ CMOS technology, IEEE Trans. Nucl. Sci. 53 (2006) 1599-1606. 
  23. Z.E. Fleetwood, E.W. Kenyon, N.E. Lourenco, S. Jain, E.X. Zhang, T.D. England, J. D. Cressler, R.D. Schrimpf, D.M. Fleetwood, Advanced SiGe BiCMOS technology for multi-Mrad electronic systems, IEEE Trans. Device Mater. Reliab. 14 (2014) 844-848. 
  24. H.J. Barnaby, Total ionizing dose effects in modern CMOS technologies, IEEE Trans. Nucl. Sci. 53 (6) (2006) 3103-3121, https://doi.org/10.1109/tns.2006.885952. 
  25. L. Yang, D. Li, X. Yang, X. Feng, L. Tan, C. Shen, H. Cai, A temperature-insensitive process corner detection circuit based on self-timing ring oscillator, Microelectron. Reliab. 138 (2022), https://doi.org/10.1016/j.microrel.2022.114779. 
  26. M. Huff, Microsystems manufacturing methods: integrated circuit processing steps, in: Process Variations in Microsystems Manufacturing, Microsystems and Nanosystems, Springer, Cham., 2020, pp. 45-97, https://doi.org/10.1007/978-3-030-40560-1_3.