• Title/Summary/Keyword: Radiation-induced genes

Search Result 78, Processing Time 0.025 seconds

The Role of Fas/FasL in Radiation Induced Apoptosis in vivo (방사선에 의한 Apoptosis에서 Fas/Fas L의 역할)

  • Kim, Sung-Hee;Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.222-226
    • /
    • 2003
  • Purpose: The interaction of the Fas: Fas ligand has been recognized to play an important role in radiation induced apoptosis. The purpose of this study was to investigate the role of Fas and Fas ligand mutations, in radiation-induced apoptosis in vivo. Materials and Methods: Mice with a mutation in the Fas ($C57BL/6J-Fas^{lpr}$) and its normal control (C57BL/6J) and the Fas ligand ($C3H/HeJ-Fas^{gld}$) and its normal control (C3H/HeJ), were used in this study. Eight-week old male mice were given whole body radiation. After irradiation, the mice were killed at various time intervals, and their spleens collected. Tissue sample was stained with hematoxylin-eosin, and the numbers of apoptotic cells scored. The regulating molecules of apoptosis including the p53, Bcl-2, Bax, $Bcl-X_L\;and\;Bcl-X_s$ genes were also analyzed by Western blotting. Results: With 2.5 Gy and 10 Gy of irradiation, the levels of apoptosis were lower in the $C57BL/6J-Fas^{lpr}\;and\;C3H/HeJ-Fas^{gld}$ mice than in the control mice (p<0.05). With the expression of apoptosis regulating molecules, the Bax was increased in both the C57BL/6J and C3H/HeJ mice in response to radiation; the peak levels of Bax in the C57BL6J and C3H/HeJ were 3 and 3.3-fold higher after 8hr, respectively. However the Bax was not increased in either the $C57BL/6J-Fas^{lpr}\;or\;C3H/HeJ-Fas^{gld}$mice. The p53, Bcl-X_L,\;Bcl-X_S$and Bcl-2 showed no significant changes in the $C57BL/6J-Fas^{lpr},\;C3H/HeJ-Fas^{gld}$, C57BL/6J and C3H/HeJ mice. Conclusion: The levels of radiation-induced apoptosis were lower in the lpr and gld, than the control mice, which seemed to be related to the level of Bax activation due to the radiation in the lpr and gld mice. This result suggests that Fas/Fas L plays an important role in radiation-induced apoptosis in vivo.

Genome Wide Expression Analysis of the Restored Changes by Carthami Flos Extract Treatment on Rat Brain Injury (흰쥐의 손상된 뇌조직에서의 유전자 발현 변화에 대한 홍화(紅花) 추출물 투여의 작용)

  • Kim, Bu-Yeo;Limb, Se-Hyun;Lee, Guem-San;Kim, Hyung-Woo;Lim, Chi-Yeon;Cho, Su-In
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.4
    • /
    • pp.706-713
    • /
    • 2010
  • Objectives : The source is from the flower of Carthamus tinctorius L., family Compositae. It is used in clinical medicine to promote blood circulation, remove blood stasis, promote menstruation and alleviate pain. In the present study, we investigated the genome wide analysis of Carthami Flos on the intra-cranial hemorrhage(ICH) model. Methods : ICH in rat was induced by injection of collagenase type IV and Carthami Flos extract(CFe) was administered orally. The molecular profile of cerebral hemorrhage in rat brain tissue was measured using microarray technique to identify up- or down- regulated genes in brain tissue. Results : Expression profile showed that diverse genes were up- or down-regulated by ICH induction. Administration of CFe restored the expression level of some of altered genes by ICH to normal expressional level. Interestingly, these recovered genes by CFe were involved in the same biological pathways which were significantly activated or suppressed by ICH. Conclusion : The above results might explain the therapeutic mechanism of CFe on ICH. Further, by analyzing interaction network, core genes was identified which could be key molecular targets of CFe against ICH.

Plasminogen Activator Inhibitor-1 as a Radiation-Responsive Gene in Bone Marrow Stromal Cells (골수기질세포에서 방사선 반응 유전자로서의 Plasminogen Activator Inhibitor-1)

  • Song, Jee-Yeon;Kwon, Hyung-Joo;Park, Chan-Kyu;Jo, Deog-Yeon;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2005
  • Bone marrow stromal cells, a constituent of the niche for hematopoietic stem cells in bone marrow, provide various factors involved in the fate decision of the hematopoietic stem and progenitor cells. Radiation, a widely used anti-cancer therapy, provokes side effects including the damage of the blood cells. Therefore, it is necessary to recover the blood cells shortly after radiation via promoting the differentiation of hematopoietic cells. In this study, we screened genes modulated by radiation in human bone marrow stromal cells in order to understand the mechanism involved in hematopoiesis after radiation. We performed differential display method by using polymerase chain reaction(PCR) and agarose gel electrophoresis. We found plasminogen activator inhibitor-1(PAI-1) was consistently induced by radiation. The significance of the PAI-1 gene modulation is to be determined.

  • PDF

Radiation Induced Changes in the Expression of Fibronectin, Pai-1, MMP in Rat Glomerular Epithelial Cell (백서 사구체 상피세포에서 방사선에 의한 Fibronectin, Pai-1, MMP 발현의 변화)

  • Park Woo-Yoon;Kim Won-Dong;Zheng Ying;Ha Tae-Sun;Kim Jae-Sung;Cho Moon-June
    • Radiation Oncology Journal
    • /
    • v.24 no.1
    • /
    • pp.58-66
    • /
    • 2006
  • Purpose: Renal irradiation can lead to the development of radiation nephropathy, and this is characterized by the accumulation of extracellular matrix and final fibrosis. To determine the possible role of the glomerular epithelial cell, the radiation-induced changes in the expression of its genes associated with the extracellular matrix were analyzed. Materials and Methods: Rat glomerular epithelial cells (GEpC) were irradiated with a single dose of 0, 2, 5, 10 and 20 Gy with using 6 MV LINAC (Siemens, USA), and the samples were collected 6, 24, 48 and 72 hours post-irradiation, respectively. Northern blotting, western blotting and zymography were used to measure the expression level of fibronectin (Fn), plasminogen activator inhibitor-1 (Pai-1), matrix metalloproteinases-2, 9 (MMP-2, 9), tissue inhibitor of metalloproteinase-2 (TIMP-2), tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA). Results: Irradiation with a single dose of 10 Gy resulted in a significant increase in Fn mRNA since 24 hours post-irradiation, and a single dose of 5 and 10 Gy significantly increased the Fn immunoreactive protein measured 48 hours post-irradiation. An increase in Pai-1 mRNA and protein was also observed and especially, a single dose of 10 Gy significantly increased the mRNA measured 24 and 48 hours post-irradiation. The active MMP-2 measured 24 hours post-irradiation slightly increased in a dose dependent manner, but this increase did not reach statistical significance. The levels of MMP-9, TIMP-2, t-PA and u-PA appeared unaltered after irradiation. Conclusion: Irradiation of the glomerular epithelial cells altered the expression of genes associated with the extracellular matrix, implying that the glomerular epithelial cell may be involved in the development of radiation nephropathy.

Inhibition of Production of Reactive Oxygen Species and Gene Expression Profiles by Cirsii Japonici Herba Extract Treatment in HepG2 Cells

  • Rho, Sam-Woong;Chung, Hwan-Suck;Kang, Moon-Kyu;Na, Young-In;Cho, Chong-Woon;Kim, Hyung-Min;Jung, Hyuk-Sang;Park, Hi-Joon;Kim, Hong-Yeoul;Hong, Moo-Chang;Shin, Min-Kyu;Kim, Sung-Soo;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.224-229
    • /
    • 2005
  • Cirsii Japonici Herba (CJH) extract has been used for hundreds of years in Asian countries as a treatment for pollutant, radiation, and alcohol-induced liver damage. The reducing effect of CJH on hydrogen peroxide-induced reactive oxygen species (ROS) production, the main cause of cell damage or death, was evaluated using the HepG2 cell line. Cell survival was determined using MTS assay. The viability of cells treated with CJH was not significantly different from oxidative-stressed HepG2 cells. A dose-dependent inhibitory effect by CJH on ROS production was shown in oxidative-stressed cells using the $H_{2}DCFDA$ assay. To identify candidate genes responsible for the anti-oxidative effects of CJH on HepG2 cells, an oligonucleotide microarray analysis was performed. The expressions of five genes were decreased, whereas nineteen genes were up-regulated in CJH plus hydrogen peroxide treated cells, compared to only hydrogen peroxide treated cells. Among them, the expression of 5 genes was decreased in hydrogen peroxide treatment when compared to control. These genes are known to regulate cell survival and progression. On the other hand, it was shown that its main compounds were not a sylimarin or its analogs. The list of differentially expressed genes may provide further insight on the action and mechanism behind the anti-oxidative effects of Cirsii Japonici Herba.

Low-dose radiation activates Nrf1/2 through reactive species and the Ca2+/ERK1/2 signaling pathway in human skin fibroblast cells

  • Lee, Eun Kyeong;Kim, Jin-Ah;Park, Seong Joon;Kim, Jeung Ki;Heo, Kyu;Yang, Kwang Mo;Son, Tae Gen
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.258-263
    • /
    • 2013
  • In the current study, we explored the effect of LDR on the activation of Nrfs transcription factor involved in cellular redox events. Experiments were carried out utilizing 0.05 and 0.5 Gy X-ray irradiated normal human skin fibroblast HS27 cells. The results showed LDR induced Nrf1 and Nrf2 activation and expression of antioxidant genes HO-1, Mn-SOD, and NQO1. In particular, 0.05 Gy-irradiation increased only Nrf1 activation, but 0.5 Gy induced both Nrf1 and Nrf2 activation. LDR-mediated Nrf1/2 activation was accompanied by reactive species (RS) generation and $Ca^{2+}$ flux. This effect was abolished in the presence of N-acetyl-cysteine and BAPTA- AM. Furthermore, Nrf1/2 activation by LDR was suppressed by PD98059, an inhibitor of ERK1/2. In conclusion, LDR induces Nrf1 and Nrf2 activation and expression of Nrf-regulated antioxidant defense genes through RS and $Ca^{2+}$/ERK1/2 pathways, suggesting new insights into the molecular mechanism underlying the beneficial role of LDR in HS27 cells.

Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/Smad Pathways

  • Yun, Mann-Seok;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1349-1360
    • /
    • 2019
  • Chronic exposure to ultraviolet (UV) radiation, regarded as a major cause of extrinsic aging or photoaging characterized by wrinkle formation and skin dehydration, exerts adverse effects on skin by causing the overproduction of reactive oxygen species. Agastache rugosa Kuntze, known as Korean mint, possesses a wide spectrum of biological properties including anti-oxidation, anti-inflammation, and anti-atherosclerosis. Previous studies have reported that A. rugosa protected human keratinocytes against UVB irradiation by restoring the anti-oxidant defense system. However, the anti-photoaging effect of A. rugosa extract (ARE) in animal models has not yet been evaluated. ARE was orally administered to hairless mice at doses of 100 or 250 mg/kg/day along with UVB exposure for 12 weeks. ARE histologically improved UVB-induced wrinkle formation, epidermal thickening, erythema, and hyperpigmentation. In addition, ARE recovered skin moisture by improving skin hydration and transepidermal water loss (TEWL). Along with this, ARE increased hyaluronic acid levels by upregulating HA synthase genes. ARE markedly increased the density of collagen and the amounts of hydroxypoline via two pathways. First, ARE significantly downregulated the mRNA expression of matrix metalloproteinases responsible for collagen degradation by inactivating the mitogen-activated protein kinase/activator protein 1 pathway. Second, ARE stimulated the transforming growth factor beta/Smad signaling, consequently raising the mRNA levels of collagen-related genes. In addition, ARE not only increased the mRNA expression of anti-oxidant enzymes but also decreased inflammatory cytokines by blocking the protein expression of nuclear factor kappa B. Collectively, our findings suggest that A. rugosa may be a potential preventive and therapeutic agent for photoaging.

Mutation of the invF Gene Encoding a Salmonella Pathogenicity Island 1 (SPI1) Activator Increases Expression of the SPI2 Gene, sseA (Salmonella Pathogenicity Island 1(SPI1)의 발현조절 유전자 invF의 변이가 SPI2 유전자(sseA)의 발현에 미치는 영향)

  • Han, Ah-Reum;Joe, Min-Ho;Kim, Dong-Ho;Baik, Sang-Ho;Lim, Sang-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.70-75
    • /
    • 2012
  • In Salmonella enterica, many genes encoded within Salmonella pathogenicity islands (SPI) 1 and 2 are required to cause a range of diseases in a variety of hosts. The SPI1-encoded regulator HilD activates both the SPI1 and 2 genes at different times during growth in Luria-Bertani (LB) media. In this study, the expression levels of hilD during growth in LB were investigated. The data suggest that hilD expression is induced in the early stationary phase and decreases in the late stationary phase, when sseA, an SPI2 gene, is maximally expressed. However, HilD could act as an activator of sseA expression in the late stationary phase despite being present at low levels. SseA expression was investigated in SPI1 regulator mutant strains, hilA, hilD and invF mutants. As expected, hilD mutation decreased sseA expression. However, we found that invF mutation caused a 1.5-fold increase in sseA expression in not only LB but also M9 minimal media, which is thought to resemble an intracellular environment. InvF overexpression restored sseA expression to wild-type levels in an invF mutant but did not cause an additional reduction in sseA expression. These results suggest that SPI1 controls SPI2 expression either positively or negatively.

Hypoxic Microenvironmental Control of Stress Protein and Erythropoietin Gene Expression

  • Beak, Sun-Hee;Han, Mi-Young;Lee, Seung-Hoon;Choi, Eun-Mi;Park, Young-Mee
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.112-118
    • /
    • 1999
  • The presence of hypoxic cells in solid tumors has long been considered a problem in cancer treatment such as in radiation therapy or treatment with some anticancer drugs. It has been suggested that hypoxic cells are involved in the development of a more aggressive phenotype and contribute to metastasis. In this study, as an attempt to understand how tumor cells adapt to hypoxic stress, we investigated the regulation of the hypoxia-induced expression of proteins that control essential processes of tumor cell survival and angiogenesis. We first examined whether hypoxia induces stress protein gene expression of murine solid tumor RIF cells. We also examined hypoxia-induced changes in angiogenic gene expression in these cells. Finally, we investigated the association of the elevated levels of stress proteins with the regulation of hypoxia-induced angiogenic gene expression. Results demonstrated that hypoxia induced the expression of the erythropoietin (EPO) gene and at least two major members of stress proteins, heat shock protein 70 (HSP70) and 25 (HSP25) in RIF tumor cells. Evidence that the expression of EPO gene was greatly potentiated in TR cells suggested that the elevated levels of HSPs may play an important role in the regulation of the hypoxia-induced EPO gene expression. One of the RIF variant cell lines, TR, displays elevated levels of HSPs constitutively. Taken together, our results suggest that a hypoxic tumor microenvironment may promote the survival and malignant progression of the tumor cells by temporarily increasing the level of stress proteins and expressing angiogenic genes. We suspect that stress proteins may be associated with the increase of the angiogenic potential of tumor cells under hypoxia.

  • PDF

Prevention of UV-induced Skin Damage by Activation of Tumor Suppressor Genes p53 and $p14^{ARF}$

  • Petersen, R.;John, S.;Lueder, M.;Borchert, S.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.338-351
    • /
    • 2003
  • UV radiation is the most dangerous stress factor among permanent environmental impacts on human skin. Consequences of UV exposure are aberrant tissue architecture, alterations in skin cells including functional changes. Nowadays new kinds of outdoor leisure-time activities and changing environmental conditions make the question of sun protection more important than ever. It is necessary to recognize that self-confident consumers do not consider to change their way of life, they demand modern solutions on the basis of new scientific developments. In the past one fundamental principle of cosmetics was the use of physical and organic filter systems against damaging UV-rays. Today new research results demonstrate that natural protecting cell mechanisms can be activated. Suitable biological actives strongly support the protection function not from the surface but from the inside of the cell. A soy seed preparation (SSP) was proven to stimulate natural skin protective functions. The major functions are an increased energy level and the prevention of DNA damage. These functions can I be defined as biological UV protection. The tumor suppressor protein p53 plays a key role in the regulation of DNA repair. p53 must be transferred into the phosphorylated form to work as transcription factor for genes which are regulating the cell cycle or organizing DNA repair. A pretreatment with SSP increases the phosphorylation rate of p53 of chronically UV-irradiated human keratinocytes significantly. According to the same test procedure SSP induces a dramatic increase in the expression of the tumor suppressor protein p14$^{ARF}$ that is supporting the p53 activity by blocking the antagonist of p53, the oncoprotein Mdm2. Mdm2, a ubiquitin E3-ligase, downregulates p53 and at the same time it prevents phosphorylation of p53. The positive influence of the tumor suppressor proteins explains the stimulation of DNA repair and prevention of sunburn cell formation by SSP, which was proven in cell culture experiments. In vivo the increased skin tolerance against UV irradiation by SSP could be confirmed too. We have assumed, that an increased repair potential provides full cell functionality.y.

  • PDF