• 제목/요약/키워드: Radiation-Induced Skin Injuries

검색결과 4건 처리시간 0.019초

Color Texture Analysis as a Tool for Quantitative Evaluation of Radiation-Induced Skin Injuries

  • Sung Young Lee;Jin Ho Kim;Ji Hyun Chang;Jong Min Park;Chang Heon Choi;Jung-in Kim;So-Yeon Park
    • Journal of Radiation Protection and Research
    • /
    • 제48권3호
    • /
    • pp.144-152
    • /
    • 2023
  • Background: Color texture analysis was applied as a tool for quantitative evaluation of radiation-induced skin injuries. Materials and Methods: We prospectively selected 20 breast cancer patients who underwent whole-breast radiotherapy after breast-conserving surgery. Color images of skin surfaces for irradiated breasts were obtained by using a mobile skin analyzer. The first skin measurement was performed before the first fraction of radiotherapy, and the subsequent measurement was conducted approximately 10 days after the completion of the entire series of radiotherapy sessions. For comparison, color images of the skin surface for the unirradiated breasts were measured similarly. For each color image, six co-occurrence matrices (red-green [RG], red-blue [RB], and green-blue [GB] from color channels, red [R], green [G], blue [B] from gray channels) can be generated. Four textural features (contrast, correlation, energy, and homogeneity) were calculated for each co-occurrence matrix. Finally, several statistical analyses were used to investigate the performance of the color textural parameters to objectively evaluate the radiation-induced skin damage. Results and Discussion: For the R channel from the gray channel, the differences in the values between the irradiated and unirradiated skin were larger than those of the G and B channels. In addition, for the RG and RB channels, where R was considered in the color channel, the differences were larger than those in the GB channel. When comparing the relative values between gray and color channels, the 'contrast' values for the RG and RB channels were approximately two times greater than those for the R channel for irradiated skin. In contrast, there were no noticeable differences for unirradiated skin. Conclusion: The utilization of color texture analysis has shown promising results in evaluating the severity of skin damage caused by radiation. All textural parameters of the RG and RB co-occurrence matrices could be potential indicators of the extent of skin damage caused by radiation.

V-Y 광배근피판을 이용한 등의 방사선 유발 피부 손상의 치험 (V-Y Latissimus Dorsi Musculocutaneous Flap for Reconstruction of Radiation-induced Skin Injuries on the Back)

  • 심승현;정철훈;김결희
    • Archives of Plastic Surgery
    • /
    • 제38권5호
    • /
    • pp.707-710
    • /
    • 2011
  • Purpose: Cardiac radiofrequency catheter ablation procedures using fluoroscopy were performed for the treatment of supraventricular and selected ventricular tachyarrhythmia. Fluoroscopy is used to localize the position of the intracardiac catheter. Fluoroscopically-guided procedures often involve high radiation doses to patient's skin, but the incidence of serious radiation injuries in these patients is rare. We reported two cases of severe postradiation skin injury on the back treated with the V-Y latissimus dorsi musculocutaneous flap. Methods: These two patients underwent radiofrequency catheter ablation under the diagnosis of Woff Parkinson White syndrome (WPW syndrome). They had radiation-induced skin injuries on the subscapular area and these lesions represented chronic ulceration, surrounding induration, hardness, and dyspigmentation. We treated these lesions with complete excision and coverage with V-Y latissimus dorsi musculocutaneous flap. Results: These two patients had no recurrence and no special complications during 20 months and 12 months follow-up periods and were satisfied aesthetically and functionally. Conclusion: V-Y latissimus dorsi musculocutaneous flap obtained better results functionally and aesthetically compared with conservative management and skin graft in severe radiation-induced skin injuries after cardiac radiofrequency catheter ablation procedure.

Development of an easy-to-handle murine model for the characterization of radiation-induced gross and molecular changes in skin

  • Chang, Hsien Pin;Cho, Jae Ho;Lee, Won Jai;Roh, Hyun;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • 제45권5호
    • /
    • pp.403-410
    • /
    • 2018
  • Background Radiation-induced skin injury is a dose-limiting complication of radiotherapy. To investigate this problem and to develop a framework for making decisions on treatment and dose prescription, a murine model of radiation-induced skin injury was developed. Methods The dorsal skin of the mice was isolated, and irradiation was applied at single doses of 15, 30, and 50 Gy. The mice were followed for 12 weeks with serial photography and laser Doppler analysis. Sequential skin biopsy samples were obtained and subjected to a histological analysis, immunostaining against transforming growth factor beta (TGF-${\beta}$), and Western blotting with Wnt-3 and ${\beta}$-catenin. Increases in the levels of TGF-${\beta}$, Wnt, and ${\beta}$-catenin were detected after irradiation. Results All tested radiation doses caused progressive dermal thickening and fibrosis. The cause of this process, however, may not be radiation alone, as the natural course of wound healing may elicit a similar response. The latent appearance of molecular and histological markers that induce fibrosis in the 15 Gy group without causing apparent gross skin injuries indicates that 15 Gy is an appropriate dose for characterizing the effects of chronic irradiation alone. Thus, this model best mimics the patterns of injury that occur in human subjects. Conclusions This animal model can be used to elucidate the gross and molecular changes that occur in radiation-induced skin injury and provides an effective platform for studying this adverse effect without complicating the process of wound healing.

Preventive Effect of Natural Pigments Against Ultraviolet B-induced Cell Death in HaCat Cells

  • Lim, Jae-Chung;Bae, Chun-Sik;Jeong, Soo-Young;Boo, Hee-Ock;Hwang, Seong-Jin;Lim, Seul-Ki;Park, Min-Jung;Kim, Jong-Chun;Kang, Seong-Soo;Han, Ho-Jae;Park, Soo-Hyun
    • 대한의생명과학회지
    • /
    • 제17권1호
    • /
    • pp.55-60
    • /
    • 2011
  • Skin is a physical barrier against diverse injury and damages. Exposure to ultraviolet (UV) radiation causes detrimental skin injuries such as inflammation and cell death. The value of natural pigments could be applied to many usages including cosmetics. This study was conducted to examine the protective effect of natural pigments extracted from mulberry, balsam pear, purple-colored sweet potato, pehmannia root, gardenia fruit, and black rice against UV-induced cell death in HaCaT cells, human keratinocyte cell lines. In the present study, the exposure of 50 mJ/$cm^2$ UV-B for 24 hr induced cell death in HaCaT cells, which was prevented by the pretreatment of extracts of mulberry, balsam pear, purple-colored sweet potato, rehmannia root, gardenia fruit, and black rice. In addition, the exposure of 50 mJ/$cm^2$ UV-B for 24 hr also increased lipid peroxide (LPO) formation, compared to control in HaCaT cells, which was prevented by the pretreatment of extracts of mulberry, balsam pear, purple-colored sweet potato, rehmannia root, gardenia fruit, and black rice. In conclusion, the extracts of mulberry, balsam pear, purple-colored sweet potato, rehmannia root, gardenia fruit, and black rice prevented the UV-B-induced cell apoptosis via the inhibition of oxidative stress in HaCaT cells.