• 제목/요약/키워드: Radiation treatment planning

검색결과 629건 처리시간 0.022초

식도암 환자에서의 Half Beam 치료법의 유용성 평가 (The Usability Evaluation Half Beam Radiation Treatment Technique on the Esophageal Cancer)

  • 박호춘;김영재;장성주
    • 한국방사선학회논문지
    • /
    • 제9권5호
    • /
    • pp.287-293
    • /
    • 2015
  • 식도암은 병변의 길이가 길고 깊이의 불균질성으로 인하여 방사선의 균일한 선량분포를 얻기 어렵다. 이러한 문제점을 개선해 보고자 Half beam 법을 이용하여 선량분포의 균질성을 극복해 보고자 환자의 영상을 바탕으로 하여 Normal beam과 Half beam을 이용하여 각각 치료계획을 세워 표적체적포함율과 선량체적곡선, 일치성지수와 균질성지수를 상호 비교하고, 인접정상장기인 심장, 척수, 폐를 비교해 보고자 한다. 실험결과 Half beam을 이용한 치료계획이 표적체적포함율과 선량체적곡선 그리고 일치성지수와 균질성지수가 우수하였으며 정상조직 보호측면에서도 미미하지만 우수한 것으로 나타났다. 하지만 정확한 환자자세가 확보되지 않으면 부작용이 발생할 수 있다. 따라서, 기하학적으로 정확한 환자의 위치잡이를 수반한 Half beam의 적용은 선량적으로 유용할 수 있을 것으로 사료된다.

Influence of Intravenous Contrast Medium on Dose Calculation Using CT in Treatment Planning for Oesophageal Cancer

  • Li, Hong-Sheng;Chen, Jin-Hu;Zhang, Wei;Shang, Dong-Ping;Li, Bao-Sheng;Sun, Tao;Lin, Xiu-Tong;Yin, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권3호
    • /
    • pp.1609-1614
    • /
    • 2013
  • Objective: To evaluate the effect of intravenous contrast on dose calculation in radiation treatment planning for oesophageal cancer. Methods: A total of 22 intravein-contrasted patients with oesophageal cancer were included. The Hounsfield unit (HU) value of the enhanced blood stream in thoracic great vessels and heart was overridden with 45 HU to simulate the non-contrast CT image, and 145 HU, 245 HU, 345 HU, and 445 HU to model the different contrast-enhanced scenarios. 1000 HU and -1000 HU were used to evaluate two non-physiologic extreme scenarios. Variation in dose distribution of the different scenarios was calculated to quantify the effect of contrast enhancement. Results: In the contrast-enhanced scenarios, the mean variation in dose for planning target volume (PTV) was less than 1.0%, and those for the total lung and spinal cord were less than 0.5%. When the HU value of the blood stream exceeded 245 the average variation exceeded 1.0% for the heart V40. In the non-physiologic extreme scenarios, the dose variation of PTV was less than 1.0%, while the dose calculations of the organs at risk were greater than 2.0%. Conclusions: The use of contrast agent does not significantly influence dose calculation of PTV, lung and spinal cord. However, it does have influence on dose accuracy for heart.

간암에서 호흡주기를 고려한 2-차원 방사선 치료 방법과 3-차원 입체조형 치료방법에서 방사선 간염 예측의 비교연구 (Comparative Study Between Respiratory Gated Conventional 2-D Plan and 3-D Conformal Plan for Predicting Radiation Hepatitis)

  • 이상욱;김귀언;정갑수;이창걸;성진실;서창옥
    • Radiation Oncology Journal
    • /
    • 제16권4호
    • /
    • pp.455-467
    • /
    • 1998
  • 목적 : 방사선치료계획시 호흡에 의한 장기의 움직임이 고려하는 경우 호흡이 방사선치료에 따른 합병증 발생에 미치는 영향을 분석하고자 하였다. 대상 및 방법 : 3차원 입체조형치료를 받은 간암 환자 4례를 대상으로 하여 방사선치료 계획용컴퓨터상에서 재분석을 하였다. 호흡주기에 따라 방사선치료를 시행 받는다고 가정하여 계획용표적체적의 상하 범위를 줄여 기존의 2-차원 치료계획을 시행한 경우와 자유롭게 호흡하면서 계획된 3-차원 입체조형치료에서 정상간과 주변정상장기의 선량체적히스토그람과 normal tissue complication probability(NTCP)를 비교하였다. 결과 : 간의 호흡에 의한 상하 운동범위는 2-3cm 이었고 호흡주기에 따른 기존의 2차원 방사선치료 방법과 자유롭게 호흡하면서 시행된 3-차원적 입체조형치료 간의 계획용표적체적과 잔여정상간, 주변정상장기의 선량체적히스토그람의 뚜렷한 차이는 관찰할 수 없었다. 또한 정상잔여간의 NTCP의 차이도 관찰할 수 없었다. 결론 : 간에 대한 방사선치료시 호흡에 의해 장기의 움직임을 고려한 방사선치료계획은 방사선치료에 따른 합병증 발생에 매우 중요한 역할을 할 것으로 생각되었고 향후 이 문제점을 극복할 수 있는 많은 연구가 필요 할것으로 생각된다.

  • PDF

Proposal on Guideline for Quality Assurance of Radiation Treatment Planning System

  • Oh, Yoonjin;Shin, Dong Oh;Kim, Juhye;Kwon, Nahye;Lee, Soon Sung;Choi, Sang Hyoun;Ahn, Sohyun;Park, Dong-wook;Kim, Dong Wook
    • 한국의학물리학회지:의학물리
    • /
    • 제28권4호
    • /
    • pp.197-206
    • /
    • 2017
  • We develop guidelines for the quality assurance of radiation treatment planning systems (TPS) by comparing and reviewing recommendations from major countries and organizations, as well as by analyzing the AAPM, ESTRO, and IAEA TPS quality assurance guidelines. We establish quality assurance items for acceptance testing, commissioning, periodic testing, system management, and security, and propose methods to perform each item within acceptable standards. Acceptance includes tests of hardware and network environments, data transmission, software, and benchmarking as specified by the system supplier, and apply the IAEA classification criteria. Commissioning includes dosimetric and non-dosimetric items for assessing TPS performance by applying the AAPM classification criteria and the latest technical items from the IAEA. Periodic quality assurance tests include daily, weekly, monthly, yearly, and occasional items by applying the AAPM classification criteria. System management and security items include the state and network connectivity of TPS, periodic data backup, and data access security. The guidelines for TPS quality assurance proposed in this study will help to improve the safety and quality of radiotherapy by preventing incidents related to radiotherapy.

Early treatment volume reduction rate as a prognostic factor in patients treated with chemoradiotherapy for limited stage small cell lung cancer

  • Lee, Joohwan;Lee, Jeongshim;Choi, Jinhyun;Kim, Jun Won;Cho, Jaeho;Lee, Chang Geol
    • Radiation Oncology Journal
    • /
    • 제33권2호
    • /
    • pp.117-125
    • /
    • 2015
  • Purpose: To investigate the relationship between early treatment response to definitive chemoradiotherapy (CRT) and survival outcome in patients with limited stage small cell lung cancer (LS-SCLC). Materials and Methods: We retrospectively reviewed 47 patients with LS-SCLC who received definitive CRT between January 2009 and December 2012. Patients were treated with systemic chemotherapy regimen of etoposide/carboplatin (n = 15) or etoposide/cisplatin (n = 32) and concurrent thoracic radiotherapy at a median dose of 54 Gy (range, 46 to 64 Gy). Early treatment volume reduction rate (ETVRR) was defined as the percentage change in gross tumor volume between diagnostic computed tomography (CT) and simulation CT for adaptive RT planning and was used as a parameter for early treatment response. The median dose at adaptive RT planning was 36 Gy (range, 30 to 43 Gy), and adaptive CT was performed in 30 patients (63.8%). Results: With a median follow-up of 27.7 months (range, 5.9 to 75.8 months), the 2-year locoregional progression-free survival (LRPFS) and overall survival (OS) rates were 74.2% and 56.5%, respectively. The mean diagnostic and adaptive gross tumor volumes were 117.9 mL (range, 5.9 to 447 mL) and 36.8 mL (range, 0.3 to 230.6 mL), respectively. The median ETVRR was 71.4% (range, 30 to 97.6%) and the ETVRR >45% group showed significantly better OS (p < 0.0001) and LRPFS (p = 0.009) than the other group. Conclusion: ETVRR as a parameter for early treatment response may be a useful prognostic factor to predict treatment outcome in LS-SCLC patients treated with CRT.

Dosimetric Effects of Low Dose 4D CT Using a Commercial Iterative Reconstruction on Dose Calculation in Radiation Treatment Planning: A Phantom Study

  • Kim, Hee Jung;Park, Sung Yong;Park, Young Hee;Chang, Ah Ram
    • 한국의학물리학회지:의학물리
    • /
    • 제28권1호
    • /
    • pp.27-32
    • /
    • 2017
  • We investigated the effect of a commercial iterative reconstruction technique (iDose, Philips) on the image quality and the dose calculation for the treatment plan. Using the electron density phantom, the 3D CT images with five different protocols (50, 100, 200, 350 and 400 mAs) were obtained. Additionally, the acquired data was reconstructed using the iDose with level 5. A lung phantom was used to acquire the 4D CT with the default protocol as a reference and the low dose (one third of the default protocol) 4D CT using the iDose for the spine and lung plans. When applying the iDose at the same mAs, the mean HU value was changed up to 85 HU. Although the 1 SD was increased with reducing the CT dose, it was decreased up to 4 HU due to the use of iDose. When using the low dose 4D CT with iDose, the dose change relative to the reference was less than 0.5% for the target and OARs in the spine plan. It was also less than 1.1% in the lung plan. Therefore, our results suggests that this dose reduction technique is applicable to the 4D CT image acquisition for the radiation treatment planning.

CORVUS Planning System을 사용한 세기조절방사선치료의 정도관리에 관한 연구 (Quality Assurance of CORVUS Planning System for Intensity Modulated Radiation Therapy)

  • 김성규
    • 한국의학물리학회지:의학물리
    • /
    • 제15권1호
    • /
    • pp.9-16
    • /
    • 2004
  • 세기조절 방사선 치료는 방사선 치료의 목적인 암 조직에는 더 많은 선량을 조사하면서, 주위 정상조직과 중요 장기에는 가능한 적은 선량이 조사되도록 하는 가장 우수한 치료 방법의 하니로 알려져 있어서 이의 임상 적용이 늘어나고 있다. 세기조절 방사선 치료의 특성상, 치료 전 과정에서 고도의 정확 정밀성을 요구하고 있다. 따라서 방사선이 치료계획된 대로 정확하게 조사되는지 검증하는 정도관리 과정이 무엇보다도 중요하며 필수적이다. 따라서 세기조절방사선 치료에는 검증과정이 필수적이다. 본 연구에서는 치료 계획 장치인 Corvus system의 정도 관리를 위한 선량 검증 방법을 고안하였으며 이의 유용성을 확인하기 위하여 두경부 부위의 세기조절 방사선치료를 설계하고 이에 관한 정도 관리를 수행하였다. 아크릴 팬톰을 이용하여 필름과 전리함, TLD를 이용한 측정 및 평가를 시행하였다. 필름 측정은 90% 선량분포에서 가로 0.03 cm, 세로 0.28 cm의 차이를 보였고, 전리함 및 TLD를 이용한 측정에서는 치료 계획과 측정치와의 차이가 각각 1%, 1.2%를 보여 이 시스템을 임상에 사용할 수 있음을 확인할 수 있었다.

  • PDF

Photon dose calculation of pencil beam kernel based treatment planning system compared to the Monte Carlo simulation

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Kim, Hoi-Nam;Lee, Hyoung-Koo;Choe, Bo-Young;Yoon, Sei-Chul
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.291-293
    • /
    • 2002
  • Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve the inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems, including Pinnacle and Helax-TMS, have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system Helax-TMS comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. Dose calculation results from TPS and Monte Carlo simulation were verified by measurements. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant.

  • PDF

Dosimetric comparison of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in total scalp irradiation: a single institutional experience

  • Ostheimer, Christian;Hubsch, Patrick;Janich, Martin;Gerlach, Reinhard;Vordermark, Dirk
    • Radiation Oncology Journal
    • /
    • 제34권4호
    • /
    • pp.313-321
    • /
    • 2016
  • Purpose: Total scalp irradiation (TSI) is a rare but challenging indication. We previously reported that non-coplanar intensity-modulated radiotherapy (IMRT) was superior to coplanar IMRT in organ-at-risk (OAR) protection and target dose distribution. This consecutive treatment planning study compared IMRT with volumetric-modulated arc therapy (VMAT). Materials and Methods: A retrospective treatment plan databank search was performed and 5 patient cases were randomly selected. Cranial imaging was restored from the initial planning computed tomography (CT) and target volumes and OAR were redelineated. For each patients, three treatment plans were calculated (coplanar/non-coplanar IMRT, VMAT; prescribed dose 50 Gy, single dose 2 Gy). Conformity, homogeneity and dose volume histograms were used for plan. Results: VMAT featured the lowest monitor units and the sharpest dose gradient (1.6 Gy/mm). Planning target volume (PTV) coverage and homogeneity was better in VMAT (coverage, 0.95; homogeneity index [HI], 0.118) compared to IMRT (coverage, 0.94; HI, 0.119) but coplanar IMRT produced the most conformal plans (conformity index [CI], 0.43). Minimum PTV dose range was 66.8%-88.4% in coplanar, 77.5%-88.2% in non-coplanar IMRT and 82.8%-90.3% in VMAT. Mean dose to the brain, brain stem, optic system (maximum dose) and lenses were 18.6, 13.2, 9.1, and 5.2 Gy for VMAT, 21.9, 13.4, 14.5, and 6.3 Gy for non-coplanar and 22.8, 16.5, 11.5, and 5.9 Gy for coplanar IMRT. Maximum optic chiasm dose was 7.7, 8.4, and 11.1 Gy (non-coplanar IMRT, VMAT, and coplanar IMRT). Conclusion: Target coverage, homogeneity and OAR protection, was slightly superior in VMAT plans which also produced the sharpest dose gradient towards healthy tissue.