• 제목/요약/키워드: Radiation tomography

검색결과 657건 처리시간 0.024초

Maximum standardized uptake value at pre-treatment PET in estimating lung cancer progression after stereotactic body radiotherapy

  • Park, Jisun;Choi, Yunseon;Ahn, Ki Jung;Park, Sung Kwang;Cho, Heunglae;Lee, Ji Young
    • Radiation Oncology Journal
    • /
    • 제37권1호
    • /
    • pp.30-36
    • /
    • 2019
  • Purpose: This study aimed to identify the feasibility of the maximum standardized uptake value (SUVmax) on baseline 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET/CT) as a predictive factor for prognosis in early stage primary lung cancer treated with stereotactic body radiotherapy (SBRT). Materials and Methods: Twenty-seven T1-3N0M0 primary lung cancer patients treated with curative SBRT between 2010 and 2018 were retrospectively evaluated. Four patients (14.8%) treated with SBRT to address residual tumor after wedge resection and one patient (3.7%) with local recurrence after resection were included. The SUVmax at baseline PET/CT was assessed to determine its relationship with prognosis after SBRT. Patients were divided into two groups based on maximum SUVmax on pre-treatment FDG PET/CT, estimated by receiver operating characteristic curve. Results: The median follow-up period was 17.7 months (range, 2.3 to 60.0 months). The actuarial 2-year local control, progression-free survival (PFS), and overall survival were 80.4%, 66.0%, and 78.2%, respectively. With regard to failure patterns, 5 patients exhibited local failure (in-field failure, 18.5%), 1 (3.7%) experienced regional nodal relapse, and other 2 (7.4%) developed distant failure. SUVmax was significantly correlated with progression (p = 0.08, optimal cut-off point SUVmax > 5.1). PFS was significantly influenced by pretreatment SUVmax (SUVmax > 5.1 vs. SUVmax ≤ 5.1; p = 0.012) and T stage (T1 vs. T2-3; p = 0.012). Conclusion: SUVmax at pre-treatment FDG PET/CT demonstrated a predictive value for PFS after SBRT for lung cancer.

The Crucial Role of the Establishment of Computed Tomography Density Conversion Tables for Treating Brain or Head/Neck Tumors

  • Yang, Shu-Chin;Lo, Su-Hua;Shie, Li-Tsuen;Lee, Sung-Wei;Ho, Sheng-Yow
    • 한국의학물리학회지:의학물리
    • /
    • 제32권3호
    • /
    • pp.59-69
    • /
    • 2021
  • Purpose: The relationship between computed tomography (CT) number and electron density (ED) has been investigated in previous studies. However, the role of these measures for guiding cancer treatment remains unclear. Methods: The CT number was plotted against ED for different imaging protocols. The CT number was imported into ED tables for the Pinnacle treatment planning system (TPS) and was used to determine the effect on dose calculations. Conversion tables for radiation dose calculations were generated and subsequently monitored using a dosimeter to determine the effect of different CT scanning protocols and treatment sites. These tables were used to retrospectively recalculate the radiation therapy plans for 41 patients after an incorrect scanning protocol was inadvertently used. The gamma index was further used to assess the dose distribution, percentage dose difference (DD), and distance-to-agreement (DTA). Results: For densities <1.1 g/cm3, the standard deviation of the CT number was ±0.6% and the greatest variation was noted for brain protocol conditions. For densities >1.1 g/cm3, the standard deviation of the CT number was ±21.2% and the greatest variation occurred for the tube voltage and head and neck (H&N) protocol conditions. These findings suggest that the factors most affecting the CT number are the tube voltage and treatment site (brain and H&N). Gamma index analyses for the 41 retrospective clinical cases, as well as brain metastases and H&N tumors, showed gamma passing rates >90% and <90% for the passing criterion of 2%/2 and 1%/1 mm, respectively. Conclusions: The CT protocol should be carefully decided for TPS. The correct protocol should be used for the corresponding TPS based on the treatment site because this especially affects the dose distribution for brain metastases and H&N tumor recognition. Such steps could help reduce systematic errors.

Optimizing cone-beam computed tomography exposure for an effective radiation dose and image quality balance

  • Ananda Amaral Santos;Brunno Santos de Freitas Silva;Fernanda Ferreira Nunes Correia;Eleazar Mezaiko;Camila Ferro de Souza Roriz;Maria Alves Garcia Silva;Deborah Queiroz Freitas;Fernanda Paula Yamamoto-Silva
    • Imaging Science in Dentistry
    • /
    • 제54권2호
    • /
    • pp.159-169
    • /
    • 2024
  • Purpose: The aim of this study was to evaluate the influence of different cone-beam computed tomography (CBCT) acquisition protocols on reducing the effective radiation dose while maintaining image quality. Materials and Methods: The effective dose emitted by a CBCT device was calculated using thermoluminescent dosimeters placed in a Rando Alderson phantom. Image quality was assessed by 3 experienced evaluators. The relationship between image quality and confidence was evaluated using the Fisher exact test, and the agreement among raters was assessed using the kappa test. Multiple linear regression analysis was performed to investigate whether the technical parameters could predict the effective dose. P-values<0.05 were considered to indicate statistical significance. Results: The optimized protocol (3 mA, 99 kVp, and 450 projection images) demonstrated good image quality and a lower effective dose for radiation-sensitive organs. Image quality and confidence had consistent values for all structures (P<0.05). Multiple linear regression analysis resulted in a statistically significant model. The milliamperage (b=0.504; t=3.406; P=0.027), kilovoltage peak (b=0.589; t=3.979; P=0.016) and number of projection images (b=0.557; t=3.762; P=0.020) were predictors of the effective dose. Conclusion: Optimized CBCT acquisition protocols can significantly reduce the effective radiation dose while maintaining acceptable image quality by adjusting the milliamperage and projection images.

소아치과 영역에서 전산화 단층촬영술의 임상적 활용에 대한 증례보고 (A CASE STUDY ON CLINICAL APPLICATION OF COMPUTED TOMOGRAPHY IN PEDIATRIC DENTISTRY)

  • 이윤석;장기택;이상훈
    • 대한소아치과학회지
    • /
    • 제25권3호
    • /
    • pp.493-498
    • /
    • 1998
  • 1. CT에 의한 매복치의 위치결정은 적절한 치료계획의 수립을 가능하게 하여 시술시간의 단축과 인접치, 인접구조물의 손상을 줄여 시술후의 부작용을 줄일 수 있었다. 2. 매복된 영구치의 견인시 CR를 활용한 결과 개창부위의 정확한 위치결정과 예후에 대한 예측이 가능하였다. 3. 평면방사선사진의 판독후 악골내 병소가 의심되어 CT를 활용한 결과 병소의 확진이 가능하였다. 4. 소아의 CT촬영은 평면 방사선 촬영에 비해 증가된 방사선 피폭량, 높은 수가 때문에 적절한 증례의 선택이 중요하다.

  • PDF

The using of megavoltage computed tomography in image-guided brachytherapy for cervical cancer: a case report

  • Tharavichitkul, Ekkasit;Janla-or, Suwapim;Wanwilairat, Somsak;Chakrabandhu, Somvilai;Klunklin, Pitchayaponne;Onchan, Wimrak;Supawongwattana, Bongkot;Galalae, Razvan M.;Chitapanarux, Imjai
    • Radiation Oncology Journal
    • /
    • 제33권2호
    • /
    • pp.155-159
    • /
    • 2015
  • We present a case of cervical cancer treated by concurrent chemoradiation. In radiation therapy part, the combination of the whole pelvic helical tomotherapy plus image-guided brachytherapy with megavoltage computed tomography of helical tomotherapy was performed. We propose this therapeutic approach could be considered in a curative setting in some problematic situation as our institution.

악관절 단층촬영시의 두경부 주요 기관의 흡수선량 (Absorbed Doses in Organs of the Head and Neck from Conventional Temporomandibular Joint Tomography)

  • 조봉혜
    • 치과방사선
    • /
    • 제29권2호
    • /
    • pp.411-416
    • /
    • 1999
  • Purpose : This study was done to evaluate the absorbed doses in organs of the head and neck for the conventional temporomandibular joint tomography. Materials and Methods : Dosimetry was performed with 32 LiF thermoluminescent dosimeters, which were placed in a tissue-equivalent phantom when the temporomandibular joint was examined by both lateral and frontal temporomandibular joint tomography. Results : For lateral tomography, parotid gland and preauricular area towards tube showed relatively high absorbed dose of 1056.9 μGy and 519.9 μGy respectively. For frontal tomography, the two largest absorbed doses were 259.2 μGy in orbit towards tube and 212.0 μGy in lens towards tube. Conclusion : Conventional temporomandibular joint tomography showed relatively low absorbed doses on critical organs. Thus, responsible use of it may not be limited.

  • PDF

A novel method for determining dose distribution on panoramic reconstruction computed tomography images from radiotherapy computed tomography

  • Hiroyuki Okamoto;Madoka Sakuramachi;Wakako Yatsuoka;Takao Ueno;Kouji Katsura;Naoya Murakami;Satoshi Nakamura;Kotaro Iijima;Takahito Chiba;Hiroki Nakayama;Yasunori Shuto;Yuki Takano;Yuta Kobayashi;Hironori Kishida;Yuka Urago;Masato Nishitani;Shuka Nishina;Koushin Arai;Hiroshi Igaki
    • Imaging Science in Dentistry
    • /
    • 제54권2호
    • /
    • pp.129-137
    • /
    • 2024
  • Purpose: Patients with head and neck cancer (HNC) who undergo dental procedures during radiotherapy (RT) face an increased risk of developing osteoradionecrosis (ORN). Accordingly, new tools must be developed to extract critical information regarding the dose delivered to the teeth and mandible. This article proposes a novel approach for visualizing 3-dimensional planned dose distributions on panoramic reconstruction computed tomography (pCT) images. Materials and Methods: Four patients with HNC who underwent volumetric modulated arc therapy were included. One patient experienced ORN and required the extraction of teeth after RT. In the study approach, the dental arch curve (DAC) was defined using an open-source platform. Subsequently, pCT images and dose distributions were generated based on the new coordinate system. All teeth and mandibles were delineated on both the original CT and pCT images. To evaluate the consistency of dose metrics, the Mann-Whitney U test and Student t-test were employed. Results: A total of 61 teeth and 4 mandibles were evaluated. The correlation coefficient between the 2 methods was 0.999, and no statistically significant difference was observed (P>0.05). This method facilitated a straightforward and intuitive understanding of the delivered dose. In 1 patient, ORN corresponded to the region of the root and the gum receiving a high dosage (approximately 70 Gy). Conclusion: The proposed method particularly benefits dentists involved in the management of patients with HNC. It enables the visualization of a 3-dimensional dose distribution in the teeth and mandible on pCT, enhancing the understanding of the dose delivered during RT.

FDG-PET/CT as prognostic factor and surveillance tool for postoperative radiation recurrence in locally advanced head and neck cancer

  • Kim, Gi-Won;Kim, Yeon-Sil;Han, Eun-Ji;Yoo, Ie-Ryung;Song, Jin-Ho;Lee, Sang-Nam;Lee, Jong-Hoon;Choi, Byung-Oak;Jang, Hong-Seok;Yoon, Sei-Chul
    • Radiation Oncology Journal
    • /
    • 제29권4호
    • /
    • pp.243-251
    • /
    • 2011
  • Purpose: To evaluate the prognostic value of metabolic tumor volume (MTV) and maximum standardized uptake value (SUVmax) on initial positron emission tomography-computed tomography (PET-CT) and investigate the clinical value of SUVmax for early detection of locoregional recurrent disease after postoperative radiotherapy in patients with locally advanced head and neck squamous cell carcinoma (HNSCC). Materials and Methods: A total of 100 patients with locally advanced HNSCC received primary tumor excision and neck dissection followed by adjuvant radiotherapy with or without chemotherapy. The MTV and SUVmax were measured from primary sites and neck nodes. The prognostic value of MTV and SUVmax were assessed using initial staging PET/CT (study A). Follow-up PET/CT scan available after postoperative concurrent chemoradiotherapy or radiotherapy were evaluated for the SUVmax value and correlated with locoregional recurrence (study B). A receiver operating characteristic (ROC) curve analysis was used to define a threshold value of SUVmax with the highest accuracy for recurrent disease assessment. Results: High MTV (>41 mL) is negative prognostic factor for disease free survival (p = 0.041). Postradiation SUVmax was significantly correlated with locoregional recurrence (hazard ratio, 1.812; 95% confidence interval, 1.361 to 2.413; P < 0.001). A cutoff value of 5.38 from follow-up PET/CT was identified as having maximal accuracy for detecting locoregional recurrence by ROC analysis. Conclusion: MTV at staging work-up was significantly associated with disease free survival. The SUVmax value from follow-up PET/CT showed high diagnostic accuracy for the detection of locoregional recurrence in postoperatively irradiated HNSCC.

Parotid gland sparing effect by computed tomography-based modified lower field margin in whole brain radiotherapy

  • Cho, Oyeon;Chun, Mison;Park, Sung Ho;Oh, Young-Taek;Kim, Mi-Hwa;Park, Hae-Jin;Nam, Sang Soo;Heo, Jaesung;Noh, O Kyu
    • Radiation Oncology Journal
    • /
    • 제31권1호
    • /
    • pp.12-17
    • /
    • 2013
  • Purpose: Parotid gland can be considered as a risk organ in whole brain radiotherapy (WBRT). The purpose of this study is to evaluate the parotid gland sparing effect of computed tomography (CT)-based WBRT compared to 2-dimensional plan with conventional field margin. Materials and Methods: From January 2008 to April 2011, 53 patients underwent WBRT using CT-based simulation. Bilateral two-field arrangement was used and the prescribed dose was 30 Gy in 10 fractions. We compared the parotid dose between 2 radiotherapy plans using different lower field margins: conventional field to the lower level of the atlas (CF) and modified field fitted to the brain tissue (MF). Results: Averages of mean parotid dose of the 2 protocols with CF and MF were 17.4 Gy and 8.7 Gy, respectively (p < 0.001). Mean parotid dose of both glands ${\geq}20$ Gy were observed in 15 (28.3%) for CF and in 0 (0.0%) for MF. The whole brain percentage volumes receiving >98% of prescribed dose were 99.7% for CF and 99.5% for MF. Conclusion: Compared to WBRT with CF, CT-based lower field margin modification is a simple and effective technique for sparing the parotid gland, while providing similar dose coverage of the whole brain.

Radiation Dose from Computed Tomography Scans for Korean Pediatric and Adult Patients

  • Won, Tristan;Lee, Ae-Kyoung;Choi, Hyung-do;Lee, Choonsik
    • Journal of Radiation Protection and Research
    • /
    • 제46권3호
    • /
    • pp.98-105
    • /
    • 2021
  • Background: In recent events of the coronavirus disease 2019 (COVID-19) pandemic, computed tomography (CT) scans are being globally used as a complement to the reverse-transcription polymerase chain reaction (RT-PCR) tests. It will be important to be aware of major organ dose levels, which are more relevant quantity to derive potential long-term adverse effect, for Korean pediatric and adult patients undergoing CT for COVID-19. Materials and Methods: We calculated organ dose conversion coefficients for Korean pediatric and adult CT patients directly from Korean pediatric and adult computational phantoms combined with Monte Carlo radiation transport techniques. We then estimated major organ doses delivered to the Korean child and adult patients undergoing CT for COVID-19 combining the dose conversion coefficients and the international survey data. We also compared our Korean dose conversion coefficients with those from Caucasian reference pediatric and adult phantoms. Results and Discussion: Based on the dose conversion coefficients we established in this study and the international survey data of COVID-19-related CT scans, we found that Korean 7-year-old child and adult males may receive about 4-32 mGy and 3-21 mGy of lung dose, respectively. We learned that the lung dose conversion coefficient for the Korean child phantom was up to 1.5-fold greater than that for the Korean adult phantom. We also found no substantial difference in dose conversion coefficients between Korean and Caucasian phantoms. Conclusion: We estimated radiation dose delivered to the Korean child and adult phantoms undergoing COVID-19-related CT examinations. The dose conversion coefficients derived for different CT scan types can be also used universally for other dosimetry studies concerning Korean CT scans. We also confirmed that the Caucasian-based CT organ dose calculation tools may be used for the Korean population with reasonable accuracy.