• Title/Summary/Keyword: Radiation therapy room

Search Result 66, Processing Time 0.021 seconds

Evaluation of the Usefulness of the Respiratory Guidance System in the Respiratory Gating Radiation Therapy (호흡동조 방사선치료 시 호흡유도시스템의 유용성 평가)

  • Lee, Yeong-Cheol;Kim, Sun-Myung;Do, Gyeong-Min;Park, Geun-Yong;Kim, Gun-Oh;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.167-174
    • /
    • 2012
  • Purpose: The respiration is one of the most important factors in respiratory gating radiation therapy (RGRT). We have developed an unique respiratory guidance system using an audio-visual system in order to support and stabilize individual patient's respiration and evaluated the usefulness of this system. Materials and Methods: Seven patients received the RGRT at our clinic from June 2011 to April 2012. After breathing exercise with the audio-visual system, we measured their spontaneous respiration and their respiration with the audio-visual system respectively. With the measured data, we yielded standard deviations by the superficial contents of respiratory cycles and functions, and analyzed them to examine changes in their breathing before and after the therapy. Results: The PTP (peak to peak) of the standard deviations of the free breathing, the audio guidance system, and the respiratory guidance system were 0.343, 0.148, and 0.078 respectively. The respiratory cycles were 0.645, 0.345, and 0.171 respectively and the superficial contents of the respiratory functions were 2.591, 1.008, and 0.877 respectively. The average values of the differences in the standard deviations among the whole patients at the CT room and therapy room were 0.425 for the PTP, 1.566 for the respiratory cycles, and 3.671 for the respiratory superficial contents. As for the standard deviations before and after the application of the PTP respiratory guidance system, that of the PTP was 0.265, that of the respiratory cycles was 0.474, and that of the respiratory superficial contents. The results of t-test of the values before and after free breathing and the audio-visual guidance system showed that the P-value of the PTP was 0.035, that of the cycles 0.009, and that of the respiratory superficial contents 0.010. Conclusion: The respiratory control could be one of the most important factors in the RGRT which determines the success or failure of a treatment. We were able to get more stable breathing with the audio-visual respiratory guidance system than free breathing or breathing with auditory guidance alone. In particular, the above system was excellent at the reproduction of respiratory cycles in care units. Such a system enables to reduce time due to unstable breathing and to perform more precise and detailed treatment.

  • PDF

Evaluation of Photon and Photoneutron Using High Energy X-ray in Radiation Therapy Room (고에너지 X-선 사용에 따른 방사선치료실 내 광자와 광중성자 평가)

  • Park, Eun-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.427-433
    • /
    • 2016
  • Recently increased use of high energy x-ray in radiation therapy, so therapeutic efficiency of tumors that located deep part also increased. However, photoneutron is problem which is generated caused by photoneuclear reaction. Photoneutron is continually required management because of that is more harmful than photon. In this regard, the study utilizing simulation of the Monte Carlo method is actively progress about photoneutron but measure is deficient. So this study was analyzed the correlation between the measured photon and photoneutron by radiation measurement device. As a result, photons were reduced when distance is farther and field size is smaller. But photoneutron were increased when field size is smaller and increased to a certain distance then reduced.

Dose Rate of Restroom in Facilities using Radioisotope (방사성동위원소 사용시설(내/외) 화장실의 외부선량률)

  • Cho, Yong-Gwi;An, Seong-Min
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.237-246
    • /
    • 2016
  • This study is therefore aimed at measuring the surface dose rate and the spatial dose rate in and outside the radionuclide facility in order to ensure safety of the patients, radiation workers and family care-givers in their use of such equipment and to provide a basic framework for further research on radiation protection. The study was conducted at 4 restrooms in and outside the radionuclide facility of a general hospital in Incheon between May 1 and July 31, 2014. During the study period, the spatial contamination dose rate and the surface contamination dose rate before and after radiation use were measured at the 4 places-thyroid therapy room, PET center, gamma camera room, and outpatient department. According to the restroom use survey by hospitals, restrooms in the radionuclide facility were used not only by patients but also by family care-givers and some of radiation workers. The highest cumulative spatial radiation dose rate was 8.86 mSv/hr at camera room restroom, followed by 7.31 mSv/hr at radioactive iodine therapy room restroom, 2.29 mSv/hr at PET center restroom, and 0.26 mSv/hr at outpatient department restroom, respectively. The surface radiation dose rate measured before and after radiation use was the highest at toilets, which are in direct contact with patient's excretion, followed by the center and the entrance of restrooms. Unsealed radioactive sources used in nuclear medicine are relatively safe due to short half lives and low energy. A patient who received those radioactive sources, however, may become a mobile radioactive source and contaminate areas the patient contacts-camera room, sedation room, and restroom-through secretion and excretion. Therefore, patients administered radionuclides should be advised to drink sufficient amounts of water to efficiently minimize radiation exposure to others by reducing the biological half-life, and members of the public-family care-givers, pregnant women, and children-be as far away from the patients until the dose remains below the permitted dose limit.

Evaluation on the Radiation Exposure of Radiation Workers in Proton Therapy (양성자 치료 시 방사선 작업 종사자에게 미치는 방사선 피폭에 대한 평가)

  • Lee, Seung-Hyun;Jang, Yo-Jong;Kim, Tae-Yoon;Jeong, Do-Hyung;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2012
  • Purpose: Unlike the existing linear accelerator with photon, proton therapy produces a number of second radiation due to the kinds of nuclide including neutron that is produced from the interaction with matter, and more attention must be paid on the exposure level of radiation workers for this reason. Therefore, thermoluminescence dosimeter (TLD) that is being widely used to measure radiation was utilized to analyze the exposure level of the radiation workers and propose a basic data about the radiation exposure level during the proton therapy. Materials and Methods: The subjects were radiation workers who worked at the proton therapy center of National Cancer Center and TLD Badge was used to compare the measured data of exposure level. In order to check the dispersion of exposure dose on body parts from the second radiation coming out surrounding the beam line of proton, TLD (width and length: 3 mm each) was attached to on the body spots (lateral canthi, neck, nipples, umbilicus, back, wrists) and retained them for 8 working hours, and the average data was obtained after measuring them for 80 hours. Moreover, in order to look into the dispersion of spatial exposure in the treatment room, TLD was attached on the snout, PPS (Patient Positioning System), Pendant, block closet, DIPS (Digital Image Positioning System), Console, doors and measured its exposure dose level during the working hours per day. Results: As a result of measuring exposure level of TLD Badge of radiation workers, quarterly average was 0.174 mSv, yearly average was 0.543 mSv, and after measuring the exposure level of body spots, it showed that the highest exposed body spot was neck and the lowest exposed body spot was back (the middle point of a line connecting both scapula superior angles). Investigation into the spatial exposure according to the workers' movement revealed that the exposure level was highest near the snout and as the distance becomes distant, it went lower. Conclusion: Even a small amount of exposure will eventually increase cumulative dose and exposure dose on a specific body part can bring health risks if one works in a same location for a long period. Therefore, radiation workers must thoroughly manage exposure dose and try their best to minimize it according to ALARA (As Low As Reasonably Achievable) as the International Commission on Radiological Protection (ICRP) recommends.

  • PDF

'THE METHOD OF TBI FOR ACCURATE REPRODUCTION OF RADIATION FIELD AND PATIENT POSITION' (방사선 전신 조사 치료시 정확한 환자자세 및 조사야 재현을 위한 방법)

  • KWEON YOUNG-HO;LEE BYOUNG-GOO;WHANG WOONG-KU;KIM YOU-HYUN
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.7 no.1
    • /
    • pp.156-166
    • /
    • 1995
  • Total body irradiation (TBI) requires large radiation field and extended source to axis distance (SAD), therefore in needs large size treatment room and it needs compensators which components. Appropriate thickness beam spoiler should be used to raise skin dose. Treatment machine, photon energy, total dose, dose rate, dose fractionation, patient position, shield of normal tissues and organs were known to important parameters for TBI. TBI disturbes regular daily treatment schedule and significantly overloads Radiation on oncology departments and during the treatment session it requires accurate reproduction of radiation field and patient position. We were enable to TBI in small size treatment room and short SAD with parallel opposing lateral fields technique and achieved homogenious whole body dose distribution using pb compensators and controled lung dose by lung shield blocks. Drawing a patient shadow on the wall, we could shortened set up time and possible to accurate reproduction of radiation field and patient position.

  • PDF

The effect of the hand massage on anxiety of the cancer patients receiving radiation treatment (손맛사지가 방사선요법을 받는 암환자의 불안에 미치는 영향)

  • 박미성;서문자
    • Journal of Korean Academy of Nursing
    • /
    • v.25 no.2
    • /
    • pp.316-329
    • /
    • 1995
  • The purpose of this study was to exame the effectiveness of the hand massage as an independent nursing intervention for the cancer patients undergoing radiation therapy. The data were collected with quasiexperimental research design from 40 subjects-20 for experimental group and 20 for control group-of the radiation oncology department of one university hospital in Seoul from January 10th to March 29th, 1994. Subjects agreed to participate in this study and ranged in age from 18 to 82 years with mean age of 52.63. They had insight of their disease and had undergone radiotherapy at least twice. The hand massage developed by Mariah Snyder (1993) based on the Swedish Massage was administered to the experimental group prior to having radiation therapy at the waiting place of radiotherapy room. Hand massage was given to each hand of patient for five minutes once a day. Measurement of the patient's blood pressure, pulse rate, state anxiety and mood were done before and after the administration of hand massage for 5 days. The data were analyzed with paired t-test, t-test an4 the results were summarized as follows ; 1. After administration of the hand massage, the diastolic blood pressure of experimental group was decreased significantly, while the systolic blood pressure and the pulse rate were decreased, but not significantaly. 2. In the experimental group, the level of anxiety was significantaly lower than control group. The mean scores of the difference of the anxiety level after having hand massage was 8.60 in the experimental group and 0.75 in the control group. 3. The difference of the mood scores before and after the massage in the experimental group was decreased significantly. The mean mood score was decreased 4.80 in the experimental group as compared with 2.02 in the control group. 4. The patients after having the hand massage expressed subjectively their feeling of relaxation, well - being and being enjoyable, the significant decreased of physical symptoms and anxiety. The findings summarized that the use of the hand massage for the cancer patient undergoing radiation therapy Produced significant changes in the level of anxiety and relaxation. Therefore it is recommended to use the hand massage as an intervention for the patients.

  • PDF

Effect of the Space Dose Rate due to Change of X-ray Irradiation Energy and MU Value in Radiation Therapy Room (선형가속기의 엑스선 조사에너지와 MU값의 변화가 치료실 내 공간선량률 변화에 미치는 영향)

  • Kwon, Hyeonghyo;Park, Geonryul;Kim, Minji;Jo, Yeongdan;Kim, Youngjae
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2020
  • This study investigated the radiation protection of therapeutic radiologists. Based on the change in X-ray energy and MU value, the space dose rate in the treatment room after the irradiation was measured. 6MV, 10MV and 15MV photon beams were exposed to radiation inside the treatment room based on 300MU, 600MU and 1000MU using a linear accelerator. And repeated 10 times under the same conditions. As a result of the experiment, 0.1555 μSv/h for 6MV 300MU, 0.157 μSv /h for 300sec, 0.152 μSv/h, 0.156 μSv/h for 600MU, and 0.157 μSv/h 0.152 μSv/h for 1000MU. 300MU of 10MV was 0.49 μSv/h, 0.309 μSv/h, and 0.69 μSv/h, 0.416 μSv/h for 600MU, respectively, and 1000MU was 0.977 μSv/h and 0.478 μSv/h, respectively. The 300MU of 15MV was 3.02 μSv/h, 1.2 μSv/h, 5.459 μSv/h at 600MU, 7.34 μSv/h at 1.836 μSv/h 1000MU, and 2.709 μSv/h. The average spatial dose rate of 6MV was not significantly different from the natural spatial dose rate in the treatment room. High spatial dose rates were measured at 10 MV and 15 MV and were attenuated over time. Therefore, entering the treatment room after a certain period of time (more than 60 seconds) is considered to be effective to prevent the exposure dose of radiation workers.

Design and Dose Distribution of Docking Applicator for an Intraoperative Radiation Therapy (수술중 방사선치료를 위한 조립형 조사기구의 제작과 선량 분포)

  • Chu, Sung-Sil;Kim, Gwi-Eon;Loh, John-Kyu
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.123-130
    • /
    • 1991
  • A docking intraoperative electron beam applicator system, which is easily docking in the collimator for a linear accelerator after setting a sterilized transparent cone on the tumor bearing area in the operation room, has been designed to optimize dose distribution and to improve the efficiency of radiation treatment method with linear accelerator. This applicator system consisted of collimator holder with shielded metals and docking cone with transparent acrylic cylinder, A number of technical innovations have been used in the design of this system, this dooking cone gives a improving latral dose coverage at therapeutic volume. The position of $90\%$ isodose curve under suface of 8 cm diameter cone was extended $4\sim7$ mm at 12 MeV electron and the isodose measurements beneath the cone wall showed hot spots as great as $106\%$ for acrylic cone. The leakage radiation dose to tissues outside the cone wall was reduced as $3\sim5\%$ of output dose. A comprehensive set of dosimetric characteristics of the intraoperative radiation therapy applicator system is presented.

  • PDF

Evaluation of Setup Error Correction for Patients Using On Board Imager in Image Guided Radiation Therapy (Image Guided Radiation Therapy (IGRT) 시 On Board Imager를 이용한 환자 Setup Error 보정평가)

  • Kang, Soo-Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.2
    • /
    • pp.69-81
    • /
    • 2008
  • Purpose: To reduce side effects in image guided radiation therapy (IGRT) and to improve the quality of life of patients, also to meet accurate SETUP condition for patients, the various SETUP correction conditions were compared and evaluated by using on board imager (OBI) during the SETUP. Materials and Methods: Each 30 cases of the head, the neck, the chest, the belly, and the pelvis in 150 cases of IGRT patients was corrected after confirmation by using OBI at every 2∼3 day. Also, the difference of the SETUP through the skin-marker and the anatomic SETUP through the OBI was evaluated. Results: General SETUP errors (Transverse, Coronal, Sagittal) through the OBI at original SETUP position were Head & Neck: 1.3 mm, Brain: 2 mm, Chest: 3 mm, Abdoman: 3.7 mm, Pelvis: 4 mm. The patients with more that 3 mm in the error range were observed in the correction devices and the patient motions by confirming in treatment room. Moreover, in the case of female patients, the result came from the position of hairs during the Head & Neck, Brain tumor. Therefore, after another SETUP in each cases of over 3 mm in the error range, the treatment was carried out. Mean error values of each parts estimated after the correction were 1 mm for the head, 1.2 mm for the neck, 2.5 mm for the chest, 2.5 mm for the belly, and 2.6 mm for the pelvis. Conclusion: The result showed the correction of SETUP for each treatment through OBI is extremely difficult because of the importance of SETUP in radiation treatment. However, by establishing the average standard of the patients from this research result, the better patient satisfaction and treatment results could be obtained.

  • PDF

Feasibility Study on Silver Nanoparticle Application to a Radioisotope Carrier (은나노입자의 방사성 동위원소 운반체 적용 유효성 검증 연구)

  • Jang, Beom-Su;Lee, Joo-Sang;Park, Hae-Jun;Kim, Hwa-Jung;Park, Sang Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.197-202
    • /
    • 2011
  • In this study, an Ag-polyaniline-silica (Ag-PANI-silica) nanoparticle was evaluated as a radioisotope carrier. An Ag-PANI-silica nanoparticle was incubated in the $^{125}I$ solution for a duration of 24 hr to test its radioisotope absorptivity. During the incubation, radioactivity of the nanoparticle was measured at 3, 6, 12, and 24 hr. After a 24 hr incubation, $^{125}I$-Ag-PANI-silica nanoparticle was incubated in a fresh saline for a duration of 48 hr to check its stability. Additionally, the $^{125}I$-Ag-PANI-silica nanoparticle was injected to the ICR mouse to investigate its in-vivo distribution characteristics. The $^{125}I$ absorption yield of the Ag-PANI-silica nanoparticle was higher than 95% after a 6 hr incubation period in the $^{125}I$ solution. And $^{125}I$-Ag-PANI-silica was stable for 48 hr at 80% yield at room temperature. The SPECT/CT image of a mouse that received $^{125}I$-Ag-PANI-silica complex showed that the $^{125}I$-Ag-PANI-silica complex was distributed in the lung, stomach and thyroid at 30 min post injection. From these results, the Ag-PANI-silica nanoparticle has good radio-iodine carrying property and can be applicable for the purpose of diagnosis and therapy.