• Title/Summary/Keyword: Radiation stability

Search Result 388, Processing Time 0.022 seconds

Uncertainty Assessment: Relative versus Absolute Point Dose Measurement for Patient Specific Quality Assurance in EBRT

  • Mahmood, Talat;Ibrahim, Mounir;Aqeel, Muhammad
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.111-121
    • /
    • 2017
  • Verification of dose distribution is an essential part of ensuring the treatment planning system's (TPS) calculated dose will achieve the desired outcome in radiation therapy. Each measurement have uncertainty associated with it. It is desirable to reduce the measurement uncertainty. A best approach is to reduce the uncertainty associated with each step of the process to keep the total uncertainty under acceptable limits. Point dose patient specific quality assurance (QA) is recommended by American Association of Medical Physicists (AAPM) and European Society for Radiotherapy and Oncology (ESTRO) for all the complex radiation therapy treatment techniques. Relative and absolute point dose measurement methods are used to verify the TPS computed dose. Relative and absolute point dose measurement techniques have a number of steps to measure the point dose which includes chamber cross calibration, electrometer reading, chamber calibration coefficient, beam quality correction factor, reference conditions, influences quantities, machine stability, nominal calibration factor (for relative method) and absolute dose calibration of machine. Keeping these parameters in mind, the estimated relative percentage uncertainty associated with the absolute point dose measurement is 2.1% (k=1). On the other hand, the relative percentage uncertainty associated with the relative point dose verification method is estimated to 1.0% (k=1). To compare both point dose measurement methods, 13 head and neck (H&N) IMRT patients were selected. A point dose for each patient was measured with both methods. The average percentage difference between TPS computed dose and measured absolute relative point dose was 1.4% and 1% respectively. The results of this comparative study show that while choosing the relative or absolute point dose measurement technique, both techniques can produce similar results for H&N IMRT treatment plans. There is no statistically significant difference between both point dose verification methods based upon the t-test for comparing two means.

A Methodology for Estimating the Uncertainty in Model Parameters Applying the Robust Bayesian Inferences

  • Kim, Joo Yeon;Lee, Seung Hyun;Park, Tai Jin
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.149-154
    • /
    • 2016
  • Background: Any real application of Bayesian inference must acknowledge that both prior distribution and likelihood function have only been specified as more or less convenient approximations to whatever the analyzer's true belief might be. If the inferences from the Bayesian analysis are to be trusted, it is important to determine that they are robust to such variations of prior and likelihood as might also be consistent with the analyzer's stated beliefs. Materials and Methods: The robust Bayesian inference was applied to atmospheric dispersion assessment using Gaussian plume model. The scopes of contaminations were specified as the uncertainties of distribution type and parametric variability. The probabilistic distribution of model parameters was assumed to be contaminated as the symmetric unimodal and unimodal distributions. The distribution of the sector-averaged relative concentrations was then calculated by applying the contaminated priors to the model parameters. Results and Discussion: The sector-averaged concentrations for stability class were compared by applying the symmetric unimodal and unimodal priors, respectively, as the contaminated one based on the class of ${\varepsilon}$-contamination. Though ${\varepsilon}$ was assumed as 10%, the medians reflecting the symmetric unimodal priors were nearly approximated within 10% compared with ones reflecting the plausible ones. However, the medians reflecting the unimodal priors were approximated within 20% for a few downwind distances compared with ones reflecting the plausible ones. Conclusion: The robustness has been answered by estimating how the results of the Bayesian inferences are robust to reasonable variations of the plausible priors. From these robust inferences, it is reasonable to apply the symmetric unimodal priors for analyzing the robustness of the Bayesian inferences.

Effect of rare earth dopants on the radiation shielding properties of barium tellurite glasses

  • Vani, P.;Vinitha, G.;Sayyed, M.I.;AlShammari, Maha M.;Manikandan, N.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4106-4113
    • /
    • 2021
  • Rare earth doped barium tellurite glasses were synthesised and explored for their radiation shielding applications. All the samples showed good thermal stability with values varying between 101 ℃ and 135 ℃ based on dopants. Structural properties showed the dominance of matrix elements compared to rare earth dopants in forming the bridging and non-bridging atoms in the network. Bandgap values varied between 3.30 and 4.05 eV which was found to be monotonic with respective rare earth dopants indicating their modification effect in the network. Various radiation shielding parameters like linear attenuation coefficient, mean free path and half value layer were calculated and each showed the effect of doping. For all samples, LAC values decreased with increase in energy and is attributed to photoelectric mechanism. Thulium doped glasses showed the highest value of 1.18 cm-1 at 0.245 MeV for 2 mol.% doping, which decreased in the order of erbium, holmium and the base barium tellurite glass, while half value layer and mean free paths showed an opposite trend with least value for 2 mol.% thulium indicating that thulium doped samples are better attenuators compared to undoped and other rare earth doped samples. Studies indicate an increased level of thulium doping in barium tellurite glasses can lead to efficient shielding materials for high energy radiation.

An Development of Leakage Current Sensing Module of the System on Chip Type Under Consideration of Electromagnetic Interface in Power Trunk Line (전력간선에서의 전자파 장애를 고려한 원칩형 누설전류 원격 검출단말기의 개발)

  • Kim, Dong-Wan;Park, Ji-Ho;Park, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.377-384
    • /
    • 2009
  • In this paper, leakage current sensing module of SoC(System on Chip)type and real time monitoring system under consideration of electromagnetic interface in power trunk line are developed. The first, leakage current sensing module of SoC type under consideration of electromagnetic interface is developed, and the developed sensing module of SoC type is composed of leakage sensing part, power supply part, interface part, communication part, AD(Alternating current to Direct current)convert part and amplification part. And also the electromagnetic compatibility is evaluated by conduction and radiation of EMI(Electromagnetic Interference) for developed sensing module. The developed system can have confidence, stability and do energy saving under mixed electric circumstance of the low voltage communication device and high voltage equipment. The second, the real time remote monitoring system is developed using designed wire and wireless communication module with leakage current sensing module of SoC type. The developed real time remote monitoring system can monitor sensing state, occurrence state of leakage current and alarm for each step etc.. And the device configuration, PCB layout for leakage current sensing module of system on chip type and the experiment configuration in consideration of EMI are presented. Also the measurement results of conduction and radiation for EMI are presented.

Application of the Leak Before Break(LBB) Concept to a Heat Exchanger in a Nuclear Power Plant

  • Kwon, Jae-Do;Lee, Choon-Yeol;Lee, Yong-Son;Sul, Il-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.10-20
    • /
    • 2001
  • The leak before break(LBB) concept is difficult to apply to a structure with a thin tube that is immersed in a water environment. A heat exchanger in a nuclear power plant is such a structure. The present paper addresses an application of the LBB concept to a heat exchanger in a nuclear power plant. The minimum leaked coolant amount(approximately 37.9 liters) containing the radioactive material which can activate the radiation detector device installed in near the heat exchanger is assumed. A postulated initial flaw size that can not grow to a critical flaw size within the time period to activate the radiation detector is justified. In this case, the radiation detector can activate the warning signal caused by coolant leakage from initially postulated flaws of the heat exchanger. The nuclear plant can safely shutdown when this occurs. Since the postulated initial flaw size can not grow to the critical flaw size, the structural integrity of the heat exchanger is not impeded. Particularly the informational scenario presented in this paper discusses an actual nuclear plant.

  • PDF

Investigation of acrylic/boric acid composite gel for neutron attenuation

  • Ramadan, Wageeh;Sakr, Khaled;Sayed, Magda;Maziad, Nabila;El-Faramawy, Nabil
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2607-2612
    • /
    • 2020
  • The present work was aimed to show the possibility of using hydrogel (acrylic/boric acid) for evaluation of the neutron radiation shielding. The influence of acrylic acid concentration, different gamma doses and relative contents of boric acid were studied. The physical properties and the thermomechanical stability of the studied samples were investigated. The shielding property of the composite for neutron was tested by Pu-Be neutron source (5 Ci) under room temperature. The neutron fluence rates and gamma fluxes were measured using a stilbene organic scintillator. The macroscopic effective removal cross-section ΣR (cm-1) of fast neutrons and total attenuation coefficient μ (cm-1) of gamma rays has been studied experimentally. The transmission parameters, the relaxation length (??) and the half-value layer (HVL) were obtained. The obtained results indicated that the addition of boric acid to acrylic acid tends to increase the macroscopic effective removal cross-section ΣR (cm-1) to 0.141 compared to 0.094 of ordinary concrete.

Chelators for 68Ga radiopharmaceuticals

  • Seelam, Sudhakara Reddy;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.1
    • /
    • pp.22-36
    • /
    • 2016
  • $^{68}Ga$ is a promising radionuclide for positron emission tomography (PET). It is a generator-produced ($^{68}Ge/^{68}Ga$-generator) radionuclide with a half-life of 68 min. The employment of $^{68}Ga$ for basic research and clinical applications is growing exponentially. Bifunctional chelators (BFCs) that can be efficiently radiolabeled with $^{68}Ga$ to yield complexes with good in vivo stability are needed. Given the practical advantages of $^{68}Ga$ in PET applications, gallium complexes are gaining increasing attention in biomedical imaging. However, new $^{68}Ga$-labeled radiopharmaceuticals that can replace $^{18}F$-labeled agents like [$^{18}F$]fluorodeoxyglucose (FDG) are needed. The majority of $^{68}Ga$-labeled derivatives currently in use consist of peptide agents, but the development of other agents, such as amino acid or nitroimidazole derivatives and glycosylated human serum albumin, is being actively pursued in many laboratories. Thus, the availability of new $^{68}Ga$-labeled radiopharmaceuticals with high impact is expected in the near future. Here, we present an overview of the different new classes of chelators for application in molecular imaging using $^{68}Ga$ PET.

Characterization of potassium supplying power of paddy soils by 40K application (40K 자연방사능(自然放射能)을 이용(利用)한 한국답토양(韓國沓土壤)의 가리공급력(加里供給力)에 관(關)한 연구(硏究) (I))

  • Kim, Tai Soon;Han, Kang Wan;Bai, Young Ja
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.33-40
    • /
    • 1971
  • Using radioactive $^{40}K$ in potassium, a study was conducted to evaluate the potassium supplying power of different soil types developed on different parent materials. A conversion factor based on two parameters namely $\frac{available\;K_{soil}}{total\;K_{soil}}$ and $\frac{K_{plant}}{K_{soil}}$ was developed and found to be closely related to plant response. According to this characterization soils derived from the various parent materials were ranked as basalt >Silla series>gneiss>porphyry>granite${\gg}$schist. From the point of view of potassium response as measured by yield as similar response pattern was observed. That is, soils derived from basalt to be most responsive as compared to the other soils. The variations among the soils may be accounted for to their potassium bearing mineralogical composition and their stability.

  • PDF

Thermally assisted IRSL and VSL measurements of display glass from mobile phones for retrospective dosimetry

  • Discher, Michael;Kim, Hyoungtaek;Lee, Jungil
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.429-436
    • /
    • 2022
  • Investigations of retrospective dosimetry have shown that components of mobile phones are suitable as emergency dosimeters in case of radiological incidents. For physical dosimetry, components can be read out using optically stimulated luminescence (OSL), thermoluminescence (TL) and phototransferred thermoluminescence (PTTL) methods to determine the absorbed dose. This paper deals with a feasibility study of display glass from modern mobile phones that are measured by thermally assisted (Ta) optically stimulated luminescence. Violet (VSL, 405 nm) and infrared (IRSL, 850 nm) LEDs were used for optical stimulation and two protocols (Ta-VSL and Ta-IRSL) were tested. The aim was to systematically investigate the luminescence properties, compare the results to blue stimulated Ta-BSL protocol (458 nm) and to develop a robust measurement protocol for the usage as an emergency dosimeter after an incident with ionizing radiation. First, the native signals were measured to calculate the zero dose signal. Next, the reproducibility and dose response of the luminescence signals were analyzed. Finally, the signal stability was tested after the storage of irradiated samples at room temperature. In general, the developed Ta-IRSL and Ta-VSL protocols indicate usability, however, further research is needed to test the potential of a new protocol for physical retrospective dosimetry.

Multi-objective path planning for mobile robot in nuclear accident environment based on improved ant colony optimization with modified A*

  • De Zhang;Run Luo;Ye-bo Yin;Shu-liang Zou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1838-1854
    • /
    • 2023
  • This paper presents a hybrid algorithm to solve the multi-objective path planning (MOPP) problem for mobile robots in a static nuclear accident environment. The proposed algorithm mimics a real nuclear accident site by modeling the environment with a two-layer cost grid map based on geometric modeling and Monte Carlo calculations. The proposed algorithm consists of two steps. The first step optimizes a path by the hybridization of improved ant colony optimization algorithm-modified A* (IACO-A*) that minimizes path length, cumulative radiation dose and energy consumption. The second module is the high radiation dose rate avoidance strategy integrated with the IACO-A* algorithm, which will work when the mobile robots sense the lethal radiation dose rate, avoiding radioactive sources with high dose levels. Simulations have been performed under environments of different complexity to evaluate the efficiency of the proposed algorithm, and the results show that IACO-A* has better path quality than ACO and IACO. In addition, a study comparing the proposed IACO-A* algorithm and recent path planning (PP) methods in three scenarios has been performed. The simulation results show that the proposed IACO-A* IACO-A* algorithm is obviously superior in terms of stability and minimization the total cost of MOPP.