• Title/Summary/Keyword: Radiation shielding properties

Search Result 91, Processing Time 0.026 seconds

Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications

  • Eid, Mohanad S.;Bondouk, I.I.;Saleh, Hosam M.;Omar, Khaled M.;Sayyed, M.I.;El-Khatib, Ahmed M.;Elsafi, Mohamed
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1456-1463
    • /
    • 2022
  • The aim of this work is to study the radiation shielding properties of cement samples with waste glass incortated into its composition. The mass attenuation coefficient (MAC) of the samples were experimentally determined to evaluate their radiation shielding ability. The experimental coefficient was evaluated using NaI detector for gamma energies between 59.53 keV and 1408.01 keV using different radioactive point sources Am-241, Eu-152, Co-60, and Cs-137, and the gamma transmission parameters half-value layer, mean free path, and transmission factor were calculated. The theoretical coefficient of the composites was determined using Geant4 and XCOM software. The results were also compared against Geant4 and XCOM simulations by calculating the relative deviation between the values to determine the accuracy of the results. In addition the mechanical properties (including Compressive and porosity) as well as the thermogravimetric analysis were tested for the present samples. Overall, it was concluded that the cement sample with 50% waste glass has the greatest shielding potential for radiation shielding applications and is a useful way to reuse waste glass.

Radiation attenuation and elemental composition of locally available ceramic tiles as potential radiation shielding materials for diagnostic X-ray rooms

  • Mohd Aizuddin Zakaria;Mohammad Khairul Azhar Abdul Razab;Mohd Zulfadli Adenan;Muhammad Zabidi Ahmad;Suffian Mohamad Tajudin;Damilola Oluwafemi Samson;Mohd Zahri Abdul Aziz
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.301-308
    • /
    • 2024
  • Ceramic materials are being explored as alternatives to toxic lead sheets for radiation shielding due to their favorable properties like durability, thermal stability, and aesthetic appeal. However, crafting effective ceramics for radiation shielding entails complex processes, raising production costs. To investigate local viability, this study evaluated Malaysian ceramic tiles for shielding in diagnostic X-ray rooms. Different ceramics in terms of density and thickness were selected from local manufacturers. Energy Dispersive X-ray Fluorescence (EDXRF) and X-ray Fluorescence (XRF) characterized ceramic compositions, while Monte Carlo Particle and Heavy Ion Transport code System (MC PHITS) simulations determined Linear Attenuation Coefficient (LAC), Half-value Layer (HVL), Mass Attenuation Coefficient (MAC), and Mean Free Path (MFP) within the 40-150 kV energy range. Comparative analysis between MC PHITS simulations and real setups was conducted. The C3-S9 ceramic sample, known for homogeneous full-color structure, showcased superior shielding attributes, attributed to its high density and iron content. Notably, energy levels considerably impacted radiation penetration. Overall, C3-S9 demonstrated strong shielding performance, underlining Malaysia's potential ceramic tile resources for X-ray room radiation shielding.

Physical Properties of Medical Radiation Shielding Sheet According to Shielding Materials Fusion and Resin Modifier Properties (차폐 재료의 융합과 개질제 특성에 따른 의료방사선 차폐 시트 물리적 특성 고찰)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.99-106
    • /
    • 2018
  • The modifier proposed in this research is for enhancing the affinity of the glass component with the high polymer resin and the molecular weight. The particle packing, tensile strength and shielding performance of the shielding sheet made of the tungsten oxide were evaluated. The best effect can be obtained when 20% of the modifier PMMA used to improve the shielding performance and maintain the affinity and strength with the sealant is mixed. The fusion of the materials presented in this study and the mass production of the shielding sheet through the modifier are possible and will contribute to the production of lightweight shielding sheets in the future.

Effects of Radiation on Thermal and Mechanical Properties of Modified Epoxy Resin and Hydrogenated Bisphenol-A Type Epoxy Resin Based Shielding Materials (개질 에폭시수지 및 수소 첨가된 비스페놀-A형 에폭시수지계 차폐재의 열적 및 역학적 성질에 미치는 방사선 영향)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kim, Ik-Soo;Do, Jae-Bum;Ro, Seung-Gy
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.524-532
    • /
    • 1997
  • ffects of radiation on the thermal and mechanical properties of modified epoxy resin and hydrogenated bisphenol-A type epoxy resin based neutron shielding materials to be used for radioactive material shipping and storage casks have been investigated. The onset temperatures of the shielding materials of KNS(Kaeri Neutron Shield)-201 and KNS-302 increased with the radiation dose, but those of KNS-202 and KNS-301 decreased at radiation dose above 0.5 MGy. In addition, the radiation dose rarely affected the change of weight of shielding materials with the variation in temperature. At radiation dose up to 0.1 MGy, thermal conductivities of shielding materials were not affected. The thermal expansion coefficients of the shielding materials of KNS-301 and 302 were affected to a less extent than those of KNS-201 and 202 by radiation. At radiation dose up to 0.1 MGy, the tensile strength, compressive strength and flexural strength of the shielding materials of KNS-202 and KNS-301 and 302 increased with the radiation dose. In contrast, those of KNS-201 decreased with an increase in the radiation dose. In addition, the amount of radiation dose on the shielding materials did not result in a measurable loss of specific gravity, weight and hydrogen content.

  • PDF

Physical characterization and radiation shielding features of B2O3-As2O3 glass ceramic

  • Mohamed Y. Hanfi;Ahmed K. Sakr;A.M. Ismail;Bahig M. Atia;Mohammed S. Alqahtani;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.278-284
    • /
    • 2023
  • The synthetic B2O3-As2O3 glass ceramic are prepared to investigate the physical properties and the radiation shielding capabilities with the variation of concentration of the As2O3 with 10, 20, 30, and 40%, respectively. XRD analyses are performed on the fabricated glass-ceramic and depicted the improvement of crystallinity by adding As2O3. The radiation shielding properties are studied for the B2O3-As2O3 glass ceramic. The values of linear attenuation coefficient (LAC) are varied with the variation of incident photon gamma energy (23.1-103 keV). The LAC values enhanced from 12.19 cm-1-37.75 cm-1 by raising the As2O3 concentration from 10 to 40 mol% at low gamma energy (23.1 keV) for BAs10 and BAs40, respectively. Among the shielding parameters, the half-value layer, transmission factor, and radiation protection efficiency are estimated. Furthermore, the fabricated samples of glass ceramic have low manufacturing costs and good shielding features compared to the previous work. It can be concluded the B2O3-As2O3 glass ceramic is appropriate to apply in X-ray or low-energy gamma-ray shielding applications.

Evaluation of 3D Printing Filaments for Radiation Shielding using High Density Polyethylene and Bismuth (고밀도 폴리에틸렌과 비스무트를 이용한 3D 프린팅용 방사선 복합필라멘트 개발 및 차폐능력 평가)

  • Park, Ki-Seok;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.233-240
    • /
    • 2022
  • Research on the presence or absence of radiation shielding for FDM-type filaments has recently begun to be studied, but filaments with shielding capabilities are not sold in Korea, and not studies yet. Therefore, in this research, we will use HDPE (High Density Polyethylene) as a base material, select bismuth as a reinforcing material to manufacture a composite filament, evaluate the shielding ability, and provide basic data for the development of a radiation shielding composite material using 3D printing.A filament is produced by mixing Bismuth with an effective atomic number 83 with HDPE of PE series and adjusting the content of Bismuth to 20% wt, 30% wt, 40% wt. Compounded filaments were evaluated for their physical properties and shielding capabilities by ASTM evaluation methods. As the bismuth content increases, the density, weight, and tensile strength increase, and the shielding capacity is confirmed to be excellent. As a result of the radiation shielding capacity evaluation, it was confirmed that HDPE (80%) + Bi (20%) showed a shielding rate of 82% at 60 kV and a shielding rate of up to 94% or more at 40% bismuth content. In this study, we confirmed that it was possible to produce a radiation shield that is lighter than the metal particle-containing filaments. Furthermore, that have been shield radiation by using HDPE + Bi filaments, and radiation in the medical and radiation industries. The possibility of using it as a shielding complex was confirmed.

Experimental Investigation of Clay Fly Ash Bricks for Gamma-Ray Shielding

  • Mann, Harjinder Singh;Brar, Gurdarshan Singh;Mann, Kulwinder Singh;Mudahar, Gurmel Singh
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1230-1236
    • /
    • 2016
  • This study aims to determine the effect of fly ash with a high replacing ratio of clay on the radiation shielding properties of bricks. Some interaction parameters (mass attenuation coefficients, half value layer, effective atomic number, effective electron density, and absorption efficiency) of clay fly ash bricks were measured with a NaI(Tl) detector at 661.6 keV, 1,173.2 keV, and 1,332.5 keV. For the investigation of their shielding behavior, fly ash bricks were molded using an admixture to clay. A narrow beam transmission geometry condition was used for the measurements. The measured values of these parameters were found in good agreement with the theoretical calculations. The elemental compositions of the clay fly ash bricks were analyzed by using an energy dispersive X-ray fluorescence spectrometer. At selected energies the values of the effective atomic numbers and effective electron densities showed a very modest variation with the composition of the fly ash. This seems to be due to the similarity of their elemental compositions. The obtained results were also compared with concrete, in order to study the effect of fly ash content on the radiation shielding properties of clay fly ash bricks. The clay fly ash bricks showed good shielding properties for moderate energy gamma rays. Therefore, these bricks are feasible and eco-friendly compared with traditional clay bricks used for construction.

Gamma radiation shielding properties of poly (methyl methacrylate) / Bi2O3 composites

  • Cao, Da;Yang, Ge;Bourham, Mohamed;Moneghan, Dan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2613-2619
    • /
    • 2020
  • This work investigated the gamma-ray shielding performance, and the physical and mechanical properties of poly (methyl methacrylate) (PMMA) composites embedded with 0-44.0 wt% bismuth trioxide (Bi2O3) fabricated by the fast ultraviolet (UV) curing method. The results showed that the addition of Bi2O3 had significantly improved the gamma shielding ability of PMMA composites. Mass attenuation coefficient and half-value layer were examined using five gamma sources (Cs-137, Ba-133, Cd-109, Co-57, and Co-60). The high loading of Bi2O3 in the PMMA samples improved the micro-hardness to nearly seven times that of the pure PMMA. With these enhancements, it was demonstrated that PMMA/Bi2O3 composites are promising gamma shielding materials. Furthermore, the fast UV curing exerts its great potential in significantly shortening the production cycle of shielding material to enable rapid manufacturing.

Effect of rare earth dopants on the radiation shielding properties of barium tellurite glasses

  • Vani, P.;Vinitha, G.;Sayyed, M.I.;AlShammari, Maha M.;Manikandan, N.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4106-4113
    • /
    • 2021
  • Rare earth doped barium tellurite glasses were synthesised and explored for their radiation shielding applications. All the samples showed good thermal stability with values varying between 101 ℃ and 135 ℃ based on dopants. Structural properties showed the dominance of matrix elements compared to rare earth dopants in forming the bridging and non-bridging atoms in the network. Bandgap values varied between 3.30 and 4.05 eV which was found to be monotonic with respective rare earth dopants indicating their modification effect in the network. Various radiation shielding parameters like linear attenuation coefficient, mean free path and half value layer were calculated and each showed the effect of doping. For all samples, LAC values decreased with increase in energy and is attributed to photoelectric mechanism. Thulium doped glasses showed the highest value of 1.18 cm-1 at 0.245 MeV for 2 mol.% doping, which decreased in the order of erbium, holmium and the base barium tellurite glass, while half value layer and mean free paths showed an opposite trend with least value for 2 mol.% thulium indicating that thulium doped samples are better attenuators compared to undoped and other rare earth doped samples. Studies indicate an increased level of thulium doping in barium tellurite glasses can lead to efficient shielding materials for high energy radiation.

Evaluation of Metal Composite Filaments for 3D Printing (3D 프린팅용 금속 입자 필라멘트의 물성 및 차폐 능력 평가)

  • Park, Ki-Seok;Choi, Woo-Jeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.697-704
    • /
    • 2021
  • It is hard to get Filaments which are materials of the 3D printing Fused Deposition Modeling(FDM) method as radiation shielding in Korea. and also related research is insufficient. This study aims to provide basic data for the development of radiation shields using 3D printing by evaluating the physical properties and radiation shielding capabilities of filaments containing metal particles. after selecting five metal filaments containing metal particle reinforcement materials, the radiation shielding rate was calculated according to the Korean Industrial Standard's protective equipment test method to evaluate physical properties such as tensile strength, density, X-ray Diffraction(XRD), and weight measurement using ASTM's evaluation method. In the tensile strength evaluation, PLA + SS was the highest, ABS + W was the lowest, and ABS + W is 3.13 g/cm3 which value was the highest among the composite filaments in the density evaluation. As a result of the XRD, it may be confirmed that the XRD peak pattern of the particles on the surface of the specimen coincides with the pattern of each particle reinforcing material powder metal, and thus it was confirmed that the printed specimen contained powder metal. The shielding effect for each 3D printed composite filament was found to have a high shielding rate in proportion to the effective atomic number and density in the order of ABS + W, ABS + Bi, PLA+SS, PLA + Cu, and PLA + Al. In this study, it was confirmed that the metal particle composite filament containing metal powder as a reinforcing material has radiation shielding ability, and the possibility of using a radiation shielding filament in the future.