• Title/Summary/Keyword: Radiation sensor

Search Result 427, Processing Time 0.021 seconds

Design of Automatic Fire Prevention and Suppression System for Photovoltaic Connection Module (태양광 접속반의 자동 화재 예방 및 진압 시스템 설계)

  • Lee, Kang Won;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.33-38
    • /
    • 2022
  • A solar power generation system uses a solar module that collects solar radiation energy, a connecting board that collects DC power generated from the solar module, and a diode to prevent reverse current from flowing from an inverter to the solar module. The existing photovoltaic connection module consists of only fuses and diodes for reverse polarity and overcurrent blocking, and does not have fire diagnosis, prevention, and suppression functions in the event of a fire. To solve this problem, this paper presents a method to monitor the internal state of the photovoltaic connection module using several sensors and to prevent and extinguish a fire using solenoid valves and fire extinguishing agents when a fire is detected. Through the experiment, it was confirmed that the proposed method normally suppresses the fire in event of a fire.

Development of High Energy Particle Detector for the Study of Space Radiation Storm

  • Jo, Gyeong-Bok;Sohn, Jongdae;Choi, Cheong Rim;Yi, Yu;Min, Kyoung-Wook;Kang, Suk-Bin;Na, Go Woon;Shin, Goo-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.277-283
    • /
    • 2014
  • Next Generation Small Satellite-1 (NEXTSat-1) is scheduled to launch in 2017 and Instruments for the Study of Space Storm (ISSS) is planned to be onboard the NEXTSat-1. High Energy Particle Detector (HEPD) is one of the equipment comprising ISSS and the main objective of HEPD is to measure the high energy particles streaming into the Earth radiation belt during the event of a space storm, especially, electrons and protons, to obtain the flux information of those particles. For the design of HEPD, the Geometrical Factor was calculated to be 0.05 to be consistent with the targets of measurement and the structure of telescope with field of view of $33.4^{\circ}$ was designed using this factor. In order to decide the thickness of the detector sensor and the classification of the detection channels, a simulation was performed using GEANT4. Based on the simulation results, two silicon detectors with 1 mm thickness were selected and the aluminum foil of 0.05 mm is placed right in front of the silicon detectors to shield low energy particles. The detection channels are divided into an electron channel and two proton channels based on the measured LET of the particle. If the measured LET is less than 0.8 MeV, the particle belongs to the electron channel, otherwise it belongs to proton channels. HEPD is installed in the direction of $0^{\circ}$, $45^{\circ}$, $90^{\circ}$ against the along-track of a satellite to enable the efficient measurement of high energy particles. HEPD detects electrons with the energy of 0.1 MeV to several MeV and protons with the energy of more than a few MeV. Thus, the study on the dynamic mechanism of these particles in the Earth radiation belt will be performed.

Space Radiation Effect on Si Solar Cells (우주 방사능에 의한 실리콘 태양 전지의 특성 변화)

  • Lee, Jae-Jin;Kwak, Young-Sil;Hwang, Jung-A;Bong, Su-Chang;Cho, Kyung-Seok;Jeong, Seong-In;Kim, Kyung-Hee;Choi, Han-Woo;Han, Young-Hwan;Choi, Yong-Woon;Seong, Baek-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.435-444
    • /
    • 2008
  • High energy charged particles are trapped by geomagnetic field in the region named Van Allen Belt. These particles can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-l) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-l orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-l solar cell degradation was caused by energetic protons which energy is about 700keV to 1.5MeV. Our result can be applied to estimate solar cell conditions of other satellites.

Comparisons in Volumes of Irrigation and Drainage, Plant Growth and Fruit Yield under FDR Sensor-, Integrated Solar Radiation-, and Timer-Automated Irrigation Systems for Production of Tomato in a Coir Substrate Hydroponic System (토마토 코이어 수경재배에서 FDR센서, 적산일사량센서 및 타이머 급액방식에 따른 급배액량, 생육 및 과실수량 비교)

  • Choi, Eun-Young;Kim, Hee-Yong;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • Water drainage from the open hydroponics often causes significant environmental pollution due to agrochemicals and loss of water and nutrients. The objectives of this study were to show the potential application of an irrigation schedule based on threshold values of volumetric substrate water content for tomato (Solanum lycopersicum L. 'Samsamgu') cultivation in a commercial hydroponic farm during spring to summer cultivation. This study was performed for minimizing effluent from coir substrate hydroponics using a frequency domain reflectometry (FDR) sensor-automated irrigation, as compared with an integrated solar-radiation (IR) and conventional timer-irrigation (TIMER) after transplanting. In results, no significant difference in daily irrigation volume was found among the treatments until 88 days after transplant (DAT). However, during the 88 to 107 DAT, the daily irrigation volume was in the order of IR (2125 mL) > TIMER (2063 mL) > FDR (1983 mL), and during the 108 to 120 DAT, it was in the order of IR (2000 mL) > TIMER (1664 mL) > FDR (1500 mL). The lowest drainage volume was observed in the FDR treatment with the order of IR (12~19%) > TIMER (4~12%) > FDR (0~7%) during the entire growing period. A lower irrigation volume in the FDR treatment after 88 DAT may be due to the sensor's detecting capacity for less water absorption by plant after completing fruit maturity with apical pruning and removal of lower leaves, while a higher irrigation volume in the IR treatment may be due to gradual increase in integrated solar-radiation amount as closer to summer season. There was no significant difference in plant growth and fruit yield among the treatments; however, a 11% and 18% of higher soluble sugar content was observed in the FDR than that of TIMER and IR treatment. respectively.

Preparation of $BaSO_{4}$ : Eu-PTFE TLD Radiation Sensor and Its Physical Characterstics ($BaSO_{4}$ : Eu-PTFE TLD 방사선 센서의 제작과 물리적 특성)

  • U, Hong;Kim, S.H.;Lee, S.Y.;Kang, H.D.;Kim, D.S.
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.59-66
    • /
    • 1992
  • To develop the highly sensitive TLD radiation sensors, $BaSO_{4}$ : Eu-PTFE TLDs are fabricated by polymerizing the PTFE(polytetrafluoroethylene) with $BaSO_{4}$ : Eu TL phosphors. The $BaSO_{4}$ : Eu TL phosphors having the highest sensitivity of $X/{\gamma}$-rays are obtained by sintering at $1000^{\circ}C$ in $N_{2}$ atmosphere a mixture of $BaSO_{4}$ powder with 1mol% Eu($Eu_{2}O_{3}$), 6mol% $NH_{4}Cl$ and 5mol% $(NH_{4})_{2}SO_{4}$ which were co-precipitated in dilute sulfuric acid and then dried. The activation energy, frequency factor and kinetic order of $BaSO_{4}$ : Eu TL phosphor are 1.17eV, $3.6{\times}10^{11}/sec$ and 1.25, respectively. And the spectral peak of $BaSO_{4}$ : Eu is about 425nm. The optimum TL Phosphor content and thickness of the $BaSO_{4}$ : Eu-PTFE TLD are 40wt% and $105.7mg/cm^{2}$. The optimum polymerization temperature and time for fabrication of $BaSO_{4}$ : Eu-PTFE TLDs are $380^{\circ}C$ and 2 hours in air, respectively. The linear dose range to ${\gamma}$ rays is 0.01-20Gy and fading rate is about 10%/60hours.

  • PDF

Effect of Plant Growth and Production of Tomato on the Water Content Control in Rockwool Culture (암면배지의 수분제어가 토마토의 생육 및 생산성에 미치는 영향)

  • Moon, Doo-Gyung;Kim, So-Hee;Cho, Myeng-Whan;Yu, In-Ho;Ryu, Hee-Ryong;Choi, Kyung-Hee;Kwon, Yong-Hee;Lee, So-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 2018
  • This study was carried out to investigate the effect of plant growth and production of tomato (Lycopersicon Esculentum Mill cv. Tefunis) according to the water content of non-recycled rockwool culture in high-rise tomato greenhouse. Daily irrigation amount was 3.8 times higher in the irrigation control by Integrated Solar Radiation (ISR) than in the Frequency Domain Reflectometry (FDR) sensor. Water content of ISR and FDR was 90-95 and 60-65%, respectively. Plant height and weight of tomato fruit was 1.2-1.9 times longer and 1.2-2.0 times heavier in the ISR than in the FDR sensor, respectively. No significantly differed to sugar content of tomato by treatments. Marketable fruits were the higher 1.3 times in the ISR compared with the FDR sensor. Cracking percentage in the ISR was also the higher 2.0 times compared with FDR sensor. Therefore, Irrigation control by ISR was appropriate to improve of plant growth and production of tomato with non-recycled rockwool culture in greenhouse during long-term cultivation.

Characteristics of Remote Sensors on KOMPSAT-I (다목적 실용위성 1호 탑재 센서의 특성)

  • 조영민;백홍렬
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Korea Aerospace Research Institute(KARI) is developing a Korea Multi-Purpose Satellite I(KOMPSAT-I) which accommodates Electro-Optical Camera(EOC), Ocean Color Imager(OCI), Space Physics Sensor(SPS) for cartography, ocean color monitoring, and space environment monitoring respectively. The satellite has the weight of about 500 kg and is operated on the sun synchronized orbit with the altitude of 685km, the orbit period of 98 minutes, and the orbit revisit time of 28days. The satellite will be launched in the third quarter of 1999 and its lifetime is more than 3 years. EOC has cartography mission to provide images for the production of scale maps, including digital elevation models, of Korea from a remote earth view in the KOMPSAT orbit. EOC collects panchromatic imagery with the ground sample distance(GSD) of 6.6m and the swath width of 15km at nadir through the visible spectral band of 510-730 nm. EOC scans the ground track of 800km per orbit by push-broom and body pointed method. OCI mission is worldwide ocean color monitoring for the study of biological oceanography. OCI is a multispectral imager generating 6 color ocean images with and <1km GSD by whisk-broom scanning method. OCI is designed to provide on-orbit spectral band selectability in the spectral range from 400nm to 900nm. The color images are collected through 6 primary spectral bands centered at 443, 490, 510, 555, 670, 865nm or 6 spectral bands selected in the spectral range via ground commands after launch. SPS consists of High Energy Particle Detector(HEPD) and Ionosphere Measurement Sensor(IMS). HEPD has mission to characterize the low altitude high energy particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities in KOMPSAT orbit.

Fast Neutron Flux Determination by Using Ex-vessel Dosimetry (노외 감시자를 이용한 압력용기 중성자 조사량 결정)

  • Yoo, Choon-Sung;Park, Jong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.4
    • /
    • pp.158-167
    • /
    • 2007
  • It is required that the neutron dosimetry be present to monitor the reactor vessel throughout its plant life. The Ex-vessel Neutron Dosimetry Systems which consist of sensor sets, radiometric monitors, gradient chains, and support hardware have been installed for 3-Loop plants after a complete withdrawal of all six in-vessel surveillance capsules. The systems have been installed in the reactor cavity annulus in order to characterize the neutron energy spectrum over the beltline region of the reactor vessel. The installed dosimetry were withdrawn and evaluated after a irradiation during one cycle and then compared to the cycle specific neutron transport calculations. The reaction rates from the measurement and calculation were compared and the results show good agreements each other.

Thermally Stimulated Exoelectron Emission from LiF(Mg,Cu,Na,Si) Phosphor (LiF(Mg,Cu,Na,Si)형광체의 열자극엑소전자방출)

  • Doh, Sih-Hong;Jeong, Jung-Hyun;Aoki, M.;Nishikawa, T.;Tamagawa, Y.;Isobe, M.
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.11-15
    • /
    • 1994
  • The TSEE characteristics of LiF(Mg,Cu,Na,Si)phosphor for gamma and beta rays are described. The TSEE glow curve of this phosphor showed 5 peaks in the range from $20^{\circ}C$ to $400^{\circ}C$ and its main peak appeared at $240^{\circ}C$. The sensitivity of the phospor for $^{60}Co$ gamma rays was about 450counts/mR. TSEE energy dependence for various beta radiation was nearly constant (${\pm}10%$) in the mean beta particle energy range from 0.02MeV to 0.8MeV. The efficiency of TSEE of the phosphor for beta radiation was $(2{\sim}15){\times}10^{-3}$.

  • PDF

Detection and Classification of Major Aerosol Type Using the Himawari-8/AHI Observation Data (Himawari-8/AHI 관측자료를 이용한 주요 대기 에어로솔 탐지 및 분류 방법)

  • Lee, Kwon-Ho;Lee, Kyu-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.493-507
    • /
    • 2018
  • Due to high spatio-temporal variability of amount and optical/microphysical properties of atmospheric aerosols, satellite-based observations have been demanded for spatiotemporal monitoring the major aerosols. Observations of the heavy aerosol episodes and determination on the dominant aerosol types from a geostationary satellite can provide a chance to prepare in advance for harmful aerosol episodes as it can repeatedly monitor the temporal evolution. A new geostationary observation sensor, namely the Advanced Himawari Imager (AHI), onboard the Himawari-8 platform, has been observing high spatial and temporal images at sixteen wavelengths from 2016. Using observed spectral visible reflectance and infrared brightness temperature (BT), the algorithm to find major aerosol type such as volcanic ash (VA), desert dust (DD), polluted aerosol (PA), and clean aerosol (CA), was developed. RGB color composite image shows dusty, hazy, and cloudy area then it can be applied for comparing aerosol detection product (ADP). The CALIPSO level 2 vertical feature mask (VFM) data and MODIS level 2 aerosol product are used to be compared with the Himawari-8/AHI ADP. The VFM products can deliver nearly coincident dataset, but not many match-ups can be returned due to presence of clouds and very narrow swath. From the case study, the percent correct (PC) values acquired from this comparisons are 0.76 for DD, 0.99 for PA, 0.87 for CA, respectively. The MODIS L2 Aerosol products can deliver nearly coincident dataset with many collocated locations over ocean and land. Increased accuracy values were acquired in Asian region as POD=0.96 over land and 0.69 over ocean, which were comparable to full disc region as POD=0.93 over land and 0.48 over ocean. The Himawari-8/AHI ADP algorithm is going to be improved continuously as well as the validation efforts will be processed by comparing the larger number of collocation data with another satellite or ground based observation data.