• 제목/요약/키워드: Radiation pressure

검색결과 681건 처리시간 0.027초

전자기파의 감쇠패턴 및 깊이 정보 취득을 이용한 수중 위치추정 기법 (Underwater Localization using EM Wave Attenuation with Depth Information)

  • 곽경민;박대길;정완균;김진현
    • 로봇학회논문지
    • /
    • 제11권3호
    • /
    • pp.156-162
    • /
    • 2016
  • For the underwater localization, acoustic sensor systems are widely used due to greater penetration properties of acoustic signals in underwater environments. On the other hand, the good penetration property causes multipath and interference effects in structured environment too. To overcome this demerit, a localization method using the attenuation of electro-magnetic(EM) waves was proposed in several literatures, in which distance estimation and 2D-localization experiments show remarkable results. However, in 3D-localization application, the estimation difficulties increase due to the nonuniform (doughnut like) radiation pattern of an omni-directional antenna related to the depth direction. For solving this problem, we added a depth sensor for improving underwater 3D-localization with the EM wave method. A micro scale pressure sensor is located in the mobile node antenna, and the depth data from the pressure sensor is calibrated by the curve fitting algorithm. We adapted the depth(z) data to 3D EM wave pattern model for the error reduction of the localization. Finally, some experiments were executed for 3D localization with the fast calculation and less errors.

펄스 튜브를 이용한 수중 음향 성능 측정 시스템 개발 (Development of Underwater Acoustic Performance Measurement System Using Pulse Tubes)

  • 서윤호;김상렬;이성민;변양헌;서영수
    • 한국소음진동공학회논문집
    • /
    • 제24권5호
    • /
    • pp.399-406
    • /
    • 2014
  • Underwater acoustic materials are installed in order to reduce reflection, transmission and radiation of an underwater structure. The acoustic performance of the materials should be evaluated in accurately-controlled environment in terms of temperature and static pressure. In this paper, two pulse tubes, which are equipped with temperature and pressure controllers, are designed and developed to evaluate echo reduction(ER) and transmission loss(TL) of underwater acoustic materials. The procedures of the evaluation are suggested and the validation is carried out by comparing theoretical values to experimental results for a simple stainless steel specimen and free surface. In result, it is validated that developed pulse tubes are able to measure ER and TL with 2 dB tolerance.

가압열충격 사고시 결함 이상화 방법이 구조물 건전성 평가에 미치는 영향 (Effect of Flaw Characterization on the Structural Integrity Evaluation Under Pressurized Thermal Shock)

  • 김진수;최재붕;김영진;박윤원
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.275-282
    • /
    • 2001
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement. Number of subclad cracks may be found during an in-service-inspection due to the presence of cladding. It is specified, in ASME Sec. XI, that a subclad crack is characterized as a surface crack when the thickness of the clad is less than 40% of the crack depth. This condition is provided to keep the crack integrity evaluation conservative. In order to refine the fracture assessment procedures for such subclad cracks under a pressurized thermal shock condition, three dimensional finite element analyses are applied for various subclad cracks existing under cladding. A total of 36 crack geometries are analyzed, and the results are compared with those for surface cracks. The resulting stress intensity factors for subclad cracks are 6 to 44% less than those for surface cracks. It is proven that the flaw characterization condition as specified in ASME Sec. XI can be overly conservative for some subclad cracks.

PLAD법에 의한 탄소 플라즈마의 모델링 (The Modelling of Carbon Plume by Pulsed-laser ablation Method)

  • 소순열;정해덕;이진;박계춘;김창선;문채주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.41-45
    • /
    • 2006
  • The study on laser-ablation plasmas has been strongly interested in fundamental aspects of laser-solid interaction and consequent plasma generation. In particular, this plasma has been widely used for the deposition of thin solid films and applied to the semiconductors and insulators. In this paper, we developed and discussed the generation of carbon ablation plasmas emitted by laser radiation on a solid target, graphite. The progress of carbon plasmas by laser-ablation was simulated using Monte-Carlo particle model under the pressures of vacuum, 1 Pa, 10 Pa and 66 Pa. At the results, carbon particles with low energy were deposited on the substrate as the pressure becomes higher. However, there was no difference of deposition distributions of carbon particles on the substrate regardless of the pressure.

  • PDF

Enhanced Approach Using Computational and Experimental Method for the Analysis of Loudspeaker System

  • Park Seok-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • 제24권3E호
    • /
    • pp.90-98
    • /
    • 2005
  • Enhanced approach using computational and experimental method is proposed and performed to describe very well the behavior of loudspeaker than conventional method. Proposed procedure is composed of four parts. First, Thiele-Small parameters for test loudspeaker are identified by an electrical impedance method like as a delta mass method. Second part includes the processes to measure physical properties. Physical data like masses and thicknesses of loudspeaker's components are measured by an electrical precision scale and a digital vernier caliper. Third, the identified Thiele-Small parameters are proposed to be used as load boundary conditions for vibration analysis instead of electromagnetic circuit analysis to get a driving force upon bobbin part. Also, these parameters and physical data are used to modify physical properties required for computation to accommodate simulated sound pressure level with measured one for loudspeaker enclosure system. These data like as Young's modulus and thickness for a diaphragm are required for vibration analysis of loudspeaker but not measured accurately. Finally, it was investigated that simulated sound pressure level with full acoustic modeling including an acoustic port for test loudspeaker agreed with experimental result very well in the midrange frequency band(from 100 Hz to 2,000 Hz). In addition, several design parametric study is performed to grasp acoustical behaviors of loudspeaker system due to variations of diaphragm thicknesses and shapes of dust cap.

초고압 GCB 소호부내의 열가스 유동해석 (Analysis of the hot gas flow field in a interrupter of UHV GCB)

  • 송기동;박경엽;이병윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.372-375
    • /
    • 1999
  • This paper presents an arc(hot-gas flow field) analysis method in GCB. This method includes the Lorentz's force due to magnetic field, turbulent viscous effect and radiation heat transfer which are indispensable to the analysis of hot-gas flow. To verify the applicability of the Proposed method, steady state hot-Eas flow analysis within a simplified interrupter has been carried out. Inlet boundary pressure values were assumed to be 9.0atm and 12.0atm. For each inlet boundary condition, three cases of hot-gas flow field analyses were performed according to the values of arc currents which were assumed to be D.C 0.6kA. 1.0kA and 2.0kA. The results revealed that the arc radius at nozzle throat has been concentrated by increasing the pressure of nozzle upstream and that the maximum temperature of arc core has been decreased along to nozzle exit and the high temperature lesion come to be wide in nozzle downstream. From these results, it is confirmed that the proposed method will be applicable to predict the large current interruption capability of GCB.

  • PDF

In-situ Blockage Monitoring of Sensing Line

  • Mangi, Aijaz Ahmed;Shahid, Syed Salman;Mirza, Sikander Hayat
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.98-113
    • /
    • 2016
  • A reactor vessel level monitoring system measures the water level in a reactor during normal operation and abnormal conditions. A drop in the water level can expose nuclear fuel, which may lead to fuel meltdown and radiation spread in accident conditions. A level monitoring system mainly consists of a sensing line and pressure transmitter. Over a period of time boron sediments or other impurities can clog the line which may degrade the accuracy of the monitoring system. The aim of this study is to determine blockage in a sensing line using the energy of the composite signal. An equivalent Pi circuit model is used to simulate blockages in the sensing line and the system's response is examined under different blockage levels. Composite signals obtained from the model and plant's unblocked and blocked channels are decomposed into six levels of details and approximations using a wavelet filter bank. The percentage of energy is calculated at each level for approximations. It is observed that the percentage of energy reduces as the blockage level in the sensing line increases. The results of the model and operational data are well correlated. Thus, in our opinion variation in the energy levels of approximations can be used as an index to determine the presence and degree of blockage in a sensing line.

선박용 디젤 엔진의 구조진동에 의한 방사소음 해석 (Radiated Noise Analysis of Marine Diesel Engine from Structural Vibration)

  • 김대환;정의봉;박정근;홍진숙
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.26-34
    • /
    • 2008
  • This paper summarizes a design procedure of radiated noise from engine blocks of marine engines. This air-borne noise is one of the significant noise contributors including the aeroacoustic noise due to intake and exhaust and the re-radiation due to structure-borne noise. Excitation forces by engine operations are evaluated taking into account the power generation mechanism from the burning process to the subsequence motion of internal parts; piston, connecting rod, and crank shaft. The acoustic transfer vector method is incorporated to effectively simulate the radiated noise field under the various operation conditions. A contribution analysis for the various excitations to the radiated noise is conducted. It is found that the firing pressure is the main source of the radiated noise, and so the structure of the cylinder can be modified to significantly reduce the radiated noise from the engine block.

축대칭 부유구조물을 가지는 부유식 해양구조물의 3차원 지진응답 해석기법 개발 (Analysis of Three-dimensional Earthquake Responses of a Floating Offshores Structure with an Axisymmetric Floating Structure)

  • 이진호;김재관
    • 한국지진공학회논문집
    • /
    • 제19권4호
    • /
    • pp.145-159
    • /
    • 2015
  • A seismic response analysis method for three-dimensional floating offshore structures due to seaquakes is developed. The hydrodynamic pressure exerted on the structure is calculated taking into account the compressibility of the sea water, the fluid-structure interaction, the energy absorption by the seabed, and the energy radiation into infinity. To validate developed method, the hydrodynamic pressure induced by the vibration of a floating massless rigid circular disk is calculated and compared with an exact analytical solution. The developed method is applied to seismic analysis of a support structure for a floating offshore wind turbine subjected to the hydrodynamic pressures induced from a seaquake. Analysis results show that earthquake response of a floating offshore structure can be greatly influenced by the compressibility of fluid, the depth (natural frequencies) of the fluid domain, and the energy absorption capacity of the seabed.

Ultrasonic Welding Technology for Solar Thermal Collector

  • Kim, Sung-Wook;Chun, Chang-Keun;Kim, Sook-Hwan
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.221-225
    • /
    • 2009
  • A solar thermal collector is a solar collector specifically intended to collect heat: that is, to absorb sunlight to provide heat. A flat plate is the most common type of solar thermal collector, and is usually used as a solar hot water panel to generate solar hot water. A flat plate collector consists basically of an insulated metal box with a glass or a plastic cover and a dark-colored copper absorber plate. Solar radiation is absorbed by the copper absorber plate and transferred to water that circulates through the collector in copper tubes. Ultrasonic welding is an industrial technique whereby high-frequency ultrasonic acoustic vibrations are locally applied to work pieces being held together under pressure to create a solid-state weld. In this study, we developed solar collector ultrasonic welding machine with digital controlled power supply and tested various welding conditions such as welding pressure, welding amplitude, welding speed. Welding speed was considered in 2~12m/min. The width of ultrasonic welds was increased with welding amplitude by 2.2~2.5mm. The fracture load of ultrasonic welds showed 20% higher than domestic products.

  • PDF