• Title/Summary/Keyword: Radiation pressure

Search Result 684, Processing Time 0.025 seconds

On the Vibration Analysis of the Floating Elastic Body Using the Boundary Integral Method in Combination with Finite Element Method

  • K.T.,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.19-36
    • /
    • 1987
  • In this research the coupling problem between the elastic structure and the fluid, specially the hydroelastic harmonic vibration problem, is studied. In order to couple the domains, i.e., the structural domain and the fluid domain, the boundary integral method(direct boundary integral formulation) is used in the fluid domain in combination with the finite element method for the structure. The boundary integral method has been widely developed to apply it to the hydroelastic vibration problem. The hybrid boundary integral method using eigenfunctions on the radiation boundaries and the boundary integral method using the series form image-functions to replace the even bottom and free surface boundaries in case of high frequencies have been developed and tested. According to the boundary conditions and the frequency ranges the different boundary integral methods with the different idealizations of the fluid boundaries have been studied. Using the same interpolation functions for the pressure distribution and the displacement the two domains have been coupled and using Hamilton principle the solution of the hydroelastic have been obtained through the direct minimizing process. It has become evident that the finite-boundary element method combining with the eigenfunction or the image-function method give good results in comparison with the experimental ones and the other numerical results by the finite element method.

  • PDF

An Investigation of Acoustic Excitation on Sooting Diffusion Flame (Soot 배출 확산 화염에 대한 음향 가진 효과 연구)

  • Young-IL Jang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.250-258
    • /
    • 2000
  • 본 논문에서는 soot을 배출하는 층류 확산 화염에 대한 음향 가진(acoustic excitation) 효과에 대해 연구하였다. 최근의 연구결과는 soot 배출 화염에 음향 가진을 작용시키면 radiation은 증가하고 soot 배출은 감소한다는 사실을 밝혀주었다. 음향 속도(acoustic velocity)는 음향 압력(acoustic pressure)과 900 상(phase) 차이가 있기 때문에 acoustic driver를 장착한 유리 튜브 내부의 축방향으로 soot을 배출하는 아세틸렌 확산 화염을 이동시킴으로서 soot 배출 감소에 대한 음향 속도와 음향 압력의 상대적인 중요도를 밝혀낼 수 있다. Soot을 배출하는 아세틸렌 화염에 soot 배출이 멈출 때까지 음향 가진을 작용시키고 유리 튜브 안의 최대 압력 위치에서 음향 압력을 측정하며, 화염 위치의 음향 속도와 음향압력은 운동량 방정식과 파동 방정식을 통해 계산된다. 실험 결과 음향 속도가 최대이고 음향 압력이 최소인 위치에서 보다 음향 속도가 최소이고 음향 압력이 최대인 위치에서 훨씬 더 큰 acoustic power가 필요함을 보여주었다. Soot 배출을 멈추는데 필요한 음향 속도의 크기는 유리 튜브의 축방향에 대해 거의 일정한 반면 음향 압력의 크기는 상당한 변화가 있었다. 이러한 결과는 Soot 배출의 감소가 주로 음향 속도에 의한 것임을 강하게 시사한다고 할 수 있다. 또한 연료의 유량이 증가함에 따라 soot 배출을 억제하는데 필요한 acoustic power도 증가한다는 사실을 확인 할 수 있었다.

  • PDF

DEVELOPMENT OF MARS-GCR/V1 FOR THERMAL-HYDRAULIC SAFETY ANALYSIS OF GAS-COOLED REACTOR SYSTEMS

  • LEE WON-JAE;JEONG JAR-JUN;LEE SEUNG-WOOK;CHANG JONGHWA
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.587-594
    • /
    • 2005
  • In an effort to develop a thermal-hydraulic (TH) safety analysis code for Gas-cooled Reactors (GCRs), the MARS code, which was primarily developed for TH analysis of water reactor systems, has been extended here for application to GCRs. The modeling requirements of the system code were derived from a review of major processes and phenomena that are expected to occur during normal and accident conditions of GCRs. Models fur code improvement were then identified through a review of existing MARS code capability. Among these, the following priority models necessary fur the analysis of limiting high and low pressure conduction cooling events were evaluated and incorporated in MARS-GCR/V1 : 1) Helium (He) and Carbon Dioxide ($CO_2$) as main system fluids, 2) gas convection heat transfer, 3) radiation heat transfer, and 4) contact heat transfer models. Each model has been assessed using various conceptual problems for code-to-code benchmarks and it was demonstrated that MARS-GCR/V1 is capable of capturing the relevant phenomena. This paper describes the models implemented in MARS-GCR/V1 and their verification and validation results.

Compression Study on a Synthetic Goethite (합성 괴타이트에 대한 압축실험)

  • Kim, Young-Ho;Hwang, Gil-Chan;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.325-330
    • /
    • 2009
  • High pressure x-ray diffraction study was performed on a synthetic FeOOH-goethite to check out its compressibility at room temperature. Angular dispersive x-ray diffraction method was employed using a symmetrical diamond anvil cell with synchrotron radiation. Bulk modulus was determined to be 222.8 GPa under assumption of $K_{T'}$ of 4.0. This value is too high comparing with the previously published values from natural samples. It has been discussed the possible causes to incur its high bulk modulus value according to the production conditions.

Bleeding & Infection Control by the Circumferential Suture & Drainage on Active Bleeding Extraction Socket under Sedation And Local Anesthesia in a Multiple Medically Compromised Patient with Anticoagulation Drug (항응고제 투여중인 다발성 전신질환자에서 과도한 발치창 출혈부의 진정요법과 국소마취 시행하에 창상주위 봉합과 배농술 통한 출혈과 감염조절)

  • Yoo, Jae-Ha;Kim, Jong-Bae
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.11 no.2
    • /
    • pp.177-182
    • /
    • 2011
  • There are five principal causes for excessive bleeding in the immediate postextraction phase ; (1) Vascular wall alteration (wound infection, scurvy, chemicals, allergy) (2) Disorders of platelet function (genetic defect, drug-aspirin, autoimmune disease) (3) Thrombocytopenic purpuras (radiation, leukemia), (4) Inherited disorders of coagulation (hemophilia, Christmas disease, vitamin deficiency, anticoagulation drug-heparin, coumarin, aspirin, plavix). If the hemorrhage from postextraction wound is unusually aggressive, and then dehydration and airway problem are occurred, the socket must be packed with gelatine sponge(Gelfoam) that was moistened with thrombin and wound closure & pressure dressing are applied. The thrombin clots fibrinogen to produce rapid hemostasis. Gelatine sponges moistened with thrombin provide effective coagulation of hemorrhage from small veins and capillaries. But, in dental alveoli, gelatine sponges may absorb oral microorganisms and cause alveolar osteitis (infection). This is a case report of bleeding and infection control by the circumferential suture and iodoform gauze drainage on infected active bleeding extraction socket under sedation and local anesthesia in a 71-years-old male patient with anticoagulation drug.

Fabrication of W-10wt.%Cu Powder for the Application of Metal Injection Molding (금속사출성형을 위한 W-10wt.%Cu 분말의 제조에 관한 연구)

  • 김순욱;손찬현;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.8 no.4
    • /
    • pp.245-252
    • /
    • 2001
  • Recent remarkable progress in the semiconductor industry has promoted smaller size of semiconductor chips and increased amounts of heat generation. So, the demand for a substrate material to meet both the characteristics of thermal expansion coefficient and heat radiation has been on the increase. Under such conditions, tungsten(W)-copper(Cu) has been proposed as materials to meet both of the above characteristics. In the present study, the W-10wt.%Cu powders were synthesised by the mixing and hydrogen reduction of the starting mixture materials such as W-Cu, $W-CuCl_2$and $WO_3-CuCl_2$ in order to obtain the full densification. The W-10wt.%Cu produced by hydrogen reduction showed the higher interparticle friction than the simple mixed W-10wt%Cu because of the W agglomerates. In the dilatometric analysis the W-10wt.%Cu prepared from the $W-CuCl_2$was largely shrank by heating up $1400^{\circ}C$ at the constant heating rate of $5^{\circ}C$/min. The possibility of application of metal injection molding (MIM) was also investigated for mass production of the complex shaped W-Cu parts in semiconductor devices. The relationship between the temperature of molding die and the pressure of injection molding was analyzed and the heating up stage of 120-$290^{\circ}C$ in the debinding process was controlled for the most suitable MIM condition.

  • PDF

A Development of Counter Flow Type of Cooling System for Effective Panel Cooling (효과적인 패널 냉각을 위한 대향류형 냉각장치의 개발)

  • Lee, Joong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.802-807
    • /
    • 2010
  • The high efficient and cooling system is very important to the control panels of electrical distributors, and Industrial automated system including computer. Also, it can be used widely in various industrial systems such as industrial robots, numerically controlled machining center, and so on. The cooling method which flowing gasses were forced to circulate by compulsion was adapted in this study. then development of counter flow type of cooling system for effective panel cooling. In the present study, fin assembly was developed for this cooling system. As results, the developed system has the improvements of cooling performances and radiant heat ratio. Its increasing of airflow mass is about 20%, and radiation rate of heating is twice or more as high as the conventional system.

Modelling and Analysis of Electrodes Erosion Phenomena of $SF_6$ Arc in a Laval Nozzle

  • Lee, Byeong-Yoon;Liau, Vui Kien;Song, Ki-Dong;Park, Kyong-Yop
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.972-974
    • /
    • 2005
  • The present work deals with the theoretical study of the effects of copper vapours resulting from the erosion of the electrodes on the properties of a SF6 arc in a Laval nozzle. Computations have been done for a DC arc of 1000A with upstream gas pressure of 3.75MPa. The arc plasma is assumed to be in local thermodynamic equilibrium(LTE). The sheath and non-equilibrium region around the electrodes are not considered in this model. However, its effects on the energy flux into the electrodes are estimated from some experimental and theoretical data. The turbulence effects are calculated using the Prandtl mixing length model. A conservation equation for the copper vapour concentration is solved together with the governing equations for mass, momentum and energy of the gas mixture. Comparisons were made between the results with and without electrodes erosion. It has been found that the presence of copper vapours cools down the arc temperature due to the combined effects of increased radiation and increased electrical conductivity. The copper vapour distribution is very sensitive to the turbulent parameter. The erosion of upstream electrode(cathode) has larger effects on the arc compared to the downstream electrode(anode) as the copper vapour eroded from the anode cannot diffuse against the high-speed axial flow.

  • PDF

A numerical study on the acoustic characteristics of splitter type centrifugal impeller (스플리터형 원심형 임펠러의 소음 특성에 대한 연구)

  • Jeon, Wan-Ho;Chung, Phil-Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.113-118
    • /
    • 2000
  • Centrifugal pump are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal pump noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal pump, and to calculate the effects of small vanes that are attached in original impeller-splitter impeller. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method(DVM) is used to model the centrifugal pump and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The splitter impeller changes the acoustic characteristics as well as performance. Two-splitter type impeller is good for acoustic characteristics.

  • PDF

THERMAL AND STRUCTURAL ANALYSIS OF CALANDRIA VESSEL OF A PHWR DURING A SEVERE ACCIDENT

  • Kulkarni, P.P.;Prasad, S.V.;Nayak, A.K.;Vijayan, P.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.469-476
    • /
    • 2013
  • In a postulated severe core damage accident in a PHWR, multiple failures of core cooling systems may lead to the collapse of pressure tubes and calandria tubes, which may ultimately relocate inside the calandria vessel forming a terminal debris bed. The debris bed, which may reach high temperatures due to the decay heat, is cooled by the moderator in the calandria. With time, the moderator is evaporated and after some time, a hot dry debris bed is formed. The debris bed transfers heat to the calandria vault water which acts as the ultimate heat sink. However, the questions remain: how long would the vault water be an ultimate heat sink, and what would be the failure mode of the calandria vessel if the heat sink capability of the reactor vault water is lost? In the present study, a numerical analysis is performed to evaluate the thermal loads and the stresses in the calandria vessel following the above accident scenario. The heat transfer from the molten corium pool to the surrounding is assumed to be by a combination of radiation, conduction, and convection from the calandria vessel wall to the vault water. From the temperature distribution in the vessel wall, the transient thermal loads have been evaluated. The strain rate and the vessel failure have been evaluated for the above scenario.