• Title/Summary/Keyword: Radiation parameter

Search Result 341, Processing Time 0.022 seconds

A Study on Inverse Radiation Analysis using RPSO Algorithm (RPSO 알고리즘을 이용한 역복사 해석에 관한 연구)

  • Lee, Kyun-Ho;Kim, Ki-Wan;Kim, Man-Young;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.635-643
    • /
    • 2007
  • An inverse radiation analysis is presented for the estimation of the radiation properties for an absorbing, emitting, and scattering media with diffusely emitting and reflecting opaque boundaries. In this study, a repulsive particle swarm optimization(RPSO) algorithm which is a relatively recent heuristic search method is proposed as an effective method for improving the search efficiency for unknown parameters. To verify the performance of the proposed RPSO algorithm, it is compared with a basic particle swarm optimization(PSO) algorithm and a hybrid genetic algorithm(HGA) for the inverse radiation problem with estimating the various radiation properties in a two-dimensional irregular medium when the measured temperatures are given at only four data positions. A finite-volume method is applied to solve the radiative transfer equation of a direct problem to obtain measured temperatures.

New Approach for Transient Radiation SPICE Model of CMOS Circuit

  • Jeong, Sang-Hun;Lee, Nam-Ho;Lee, Jong-Yeol;Cho, Seong-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1182-1187
    • /
    • 2013
  • Transient radiation is emitted during a nuclear explosion and causes fatal errors as upset and latch-up in CMOS circuits. This paper proposes the transient radiation SPICE models of NMOS, PMOS, and INVERTER based on the transient radiation analysis using TCAD (Technology Computer Aided Design). To make the SPICE model of a CMOS circuit, the photocurrent in the PN junction of NMOS and PMOS was replaced as current source, and a latch-up phenomenon in the inverter was applied using a parasitic thyristor. As an example, the proposed transient radiation SPICE model was applied to a CMOS NAND circuit. The CMOS NAND circuit was simulated by SPICE and TCAD using the 0.18um CMOS process model parameter. The simulated results show that the SPICE results were similar to the TCAD simulation and the test results of commercial CMOS NAND IC. The simulation time was reduced by 120 times compared to the TCAD simulation.

Numerical Analysis of Natural Convection-Radiation Heat Transfer in an Enclosure Containing Absorbing, emitting and Linear Anisotropic Scattering Medium (흡수,방사 및 선형비등방 산란 매질을 포함하는 밀폐공간내의 자연대류- 복사열전달에 대한 수치해석)

  • 차상명;김종열;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.952-964
    • /
    • 1992
  • The interaction of natural convection and radiation heat transfer in a two dimensional square enclosure containing absorbing, emitting and linear anisotropically scattering gray medium is numerically analyzed. P-1 and P-3 approximation is introduced to calculate radiation heat transfer. The effects of scattering albedo, wall emissivity, scattering anisotropy, and optical thickness on the characteristics of the flow and temperature field and heat transfer are investigated. Temperature and velocity profiles depend a great deal on the scattering albedo, and the importance of this effect increases with decrease in albelo. Planck number is another important parameter in radiation heat transfer. The increase in scattering albedo increases convection heat transfer and decreases radiation heat transfer at hot wall. However, the increase in scattering albedo decreases both convection and radiation heat transfer at cold wall. The increase in optical thickness decreases radiation heat transfer. The scattering anisotropy has important effects on the radiation heat transfer only. The highly forward scattering leads to an increase of radiation heat transfer whereas the highly backward scattering leads to an decrease of radiation heat transfer. The effect of scattering anisotropy decreases when reducing the wall emissivity.

Research on Measurement Condition Establishment of a Liquid Scintillation Counter System (액체섬광계수기 장비의 계측조건 확립에 관한 연구)

  • Park, Eung-Seop;Han, Sang-Jun;Lee, Seung-Jin;Kim, Hee-Gang;Lee, Na-Young;Mun, Ji-Yeon
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.155-164
    • /
    • 2006
  • It is judged that there could be certainty in every process of analyzing environmental samples using Liquid Scintillation Counter. Therefore, this study focuses on quantitative evaluation on uncertainty in an effort to analyze comparatively accurately environmental samples. For this, after parameters which can have an effect on uncertainty was derived, the evaluation on each parameter was tamed out. The results of analysis of each parameter showed that the effect according to the weight difference of Teflon vial did not appear, and that standard deviations of SQP(E) averages reached saturation point at $75{\sim}90$ sec at the result of making increases step by step the irradiation time of External standard, and that values measured by repeat method produces good results compared with replicate. Also, conclusion was derived that analysis on sample after it is left in cold and dark room at least above 1,000 minutes have to be carried out, and the result of carrying out verification on results measured as well as equipment itself using radioactivity-error-analysis and chi-square test, resonable result was derived.

The Influence of Hydrogen Loading on Radiation Sensitivity of Fiber Bragg Gratings (광섬유 브래그 격자의 방사선 민감도에 대한 수소로딩의 영향)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2461-2465
    • /
    • 2013
  • This paper investigates the influence of hydrogen loading process on the radiation sensitivity of fiber Bragg gratings (FBG). We made the FBG inscribed in the same commercial Ge-doped fiber with different hydrogen loading periods. We measured the Bragg wavelength shift (BWS) of the FBG exposed to gamma-radiation up to a dose of 18 kGy, and evaluated the change of full width at half maximum (FWHM) and the FBG temperature sensitivity coefficient after irradiation. Varying hydrogen loading parameter led to BWS differences up to nearly a factor of two.

Object-Oriented Stereotactic Radiosurgery Planning System (객체 지향 개념을 이용한 뇌정위 방사선 수술 계획 시스템)

  • Park, S.H.;Suh, T.S.;Suh, D.Y.;Kang, W.S.;Ha, S.H.;Kim, I.H.;Park, C.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.85-87
    • /
    • 1994
  • In this paper, we present an object-oriented stereotactic radiosurgery planning system, which accepts medical images such as CT and angiography, transforms the coordinates to a reference frame coordinate, calculates dose distributions, and finally displays isodose curves over the images. The user finds an adequate one for radiosurgeries after performing computer simulations on different treatment parameter sets. The object-oriented design concept was fully applied to the system composed of seven manager objects of different classes: a patient information manager, a user-interface manager, a coordinate transformation manager, a blackboard manager, a dose calculation manager, an isodose curve display manager, and a report manager. All the user interactions are carried out through the use of mouse buttons. The performance of the system was verified by four physicians and two medical physicists, and now is being used in two clinical sites.

  • PDF

LOCATIONS OF OUT-OF-PLANE EQUILIBRIUM POINTS IN THE ELLIPTIC RESTRICTED THREE-BODY PROBLEM UNDER RADIATION AND OBLATENESS EFFECTS

  • HUDA, IBNU NURUL;DERMAWAN, BUDI;WIBOWO, RIDLO WAHYUDI;HIDAYAT, TAUFIQ;UTAMA, JUDHISTIRA ARYA;MANDEY, DENNY;TAMPUBOLON, IHSAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.295-296
    • /
    • 2015
  • This study deals with the generalization of the Elliptic Restricted Three-Body Problem (ER3BP) by considering the effects of radiation and oblate spheroid primaries. This may illustrate a gas giant exoplanet orbiting its host star with eccentric orbit. In the three dimensional case, this generalization may possess two additional equilibrium points ($L_{6,7}$, out-of-plane). We determine the existence of $L_{6,7}$ in ER3BP under the effects of radiation (bigger primary) and oblateness (small primary). We analytically derive the locations of $L_{6,7}$ and assume initial approximations of (${\mu}-1$, ${\pm}\sqrt{3A_2}$), where ${\mu}$ and $A_2$ are the mass parameter and oblateness factor, respectively. The fixed locations are then determined. Our results show that the locations of $L_{6,7}$ are periodic and affected by $A_2$ and the radiation factor ($q_1$).

Basic Principles of CT Dose Index and Understanding of CT Parameter for Dose Reduction Technique (CT선량지표의 원리와 선량감소 방안에 관한 연구)

  • Kim, Jung-Su;Kwon, Soon-Mu;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2015
  • Computed tomography(CT) using radiation have potential risks. All medical radiographic examinations should require the justification of medical imaging examinations and optimization of the image quality and radiation exposure. The CT examination was higher radiation dose then general radiography. Especially pediatric CT examinations need to great caution of radiation risk. Because of pediatric patient was more sensitive of radiation exposure. Therefore, physician should consider the knowledge of CT radiation exposure indicator information for reduce a needless radiation exposure. This article was aim to understanding of CT exposure indicator, size-specific dose estimates by American Association of Physicists in Medicine (AAPM) report 204, XR 25 and understanding of CT dose reduction technique.

Radiation Damage by the Pool Fire of LNG Storage Tank (LNG 저장 탱크의 Pool Fire에 의한 복사열 피해)

  • Sohn Jung-Hwan;Hahn Yoon-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.14-22
    • /
    • 1998
  • In this work, in order to quantitatively predict the radiation flux and propose an idea about how to reduce the radiation damage, the radiation flux caused by pool fire of an LNG storage tank has been calculated using the RISC (Risk and Industrial Safety Consultant) proposed model under various conditions. Model predictions showed that the most important parameter affecting the radiation flux by the LNG pool fire is the wind speed. The extent of radiation damage to a target from fire flame was more significant with variation of wind speed at a low wind speed than with that at a high wind speed. It was found that the radiation damage by the former is substantially reduced with planting windbreak system around the plant. Since the windbreak is most economical than any other method, it is strongly suggested to plant a tree belt in the factory surroundings, especially near by the area of gas storage facilities, linking with water cooling and fire protection systems.

  • PDF

Evaluation of Clinical Application Model of Optimized Parameter through Analysis of Stability of Radiation Output and Image Quality when Exposure Time Change of Digital Radiography (DR) (디지털 방사선 시스템(DR)의 조사시간 변화 시 방사선 출력과 영상 화질의 안정성 분석을 통한 최적화된 파라미터의 임상 적용 모델 평가)

  • Hwang, Jun-Ho;Choi, Ji-An;Kim, Hyun-Soo;Lee, Kyung-Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.139-148
    • /
    • 2020
  • The purpose of this study is to propose a method to optimize the performance of Digital Radiography (DR) by analyzing the effect of exposure time change on the stability of radiation output and image quality. The experimental method was used to change the exposure time to 50 msec, 100 msec, 200 msec, and 400 msec so that the Percentage Average Error (PAE), Time-to-Radiation Dose Curve, Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR) and theses analysis were performed to evaluate the normal operation of parameters, radiation output and image quality. As a result, all the parameters used in the experiment showed the Percentage Average Error in the normal range, and the shorter the exposure time, the stability of radiation output and image quality decrease. In conclusion, it was found that the performance of Digital Radiography can be optimized when stable radiation output and image quality are applied by applying 100 msec ~ 200 msec exposure time.