• 제목/요약/키워드: Radiation monitoring system

Search Result 238, Processing Time 0.038 seconds

종합적인 지구환경 감시를 위한 지구관측시스템 (EOS) 사업

  • Park, Sun-Ki
    • Atmosphere
    • /
    • v.12 no.4
    • /
    • pp.56-68
    • /
    • 2002
  • In this study, an overview of the Earth Observing System (EOS) program is provided with discussions on its spacecrafts and instruments, and on the scientific issues. The EOS satellites aim at monitoring the Earth environmental system by observing parameters of subsystems such as atmosphere, ocean, land, and biosphere. The first EOS flagship, Terra, was launched on December 1999. Five instruments onboard Terra can measure cloud and aerosol properties, radiation, terrestrial surface, and ocean color. The second EOS flagship, Aqua, which was launched on May 2002, loads six instruments that measure clouds, radiation, precipitation, terrestrial surface, ocean color and sea surface temperature. The observational data available from the EOS satellites may complement data from the Communication-Oceanography-Meteorology satellite, which will be launched in 2008, for meteorological and environmental forecasts.

MIGSHIELD: A new model-based interactive point kernel gamma ray shielding package for virtual environment

  • Li, Mengkun;Xu, Zhihui;Li, Wei;Yang, Jun;Yang, Ming;Lu, Hongxin;Dai, Xinyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1557-1564
    • /
    • 2020
  • In this paper, 3D model-based interactive gamma ray shielding package (MIGSHIELD) is developed in virtual reality platform for windows operating system. In MIGSHIELD, the computational methodology is based on point kernel algorithm (PK), several key parameters of PK are obtained using new technique and new methods. MIGSHIELD has interactive capability with virtual world. The main features made in the MIGSHIELD are (i) handling of physical information from virtual world, (ii) handling of arbitrary shapes radioactive source, (iii) calculating the mean free path of gamma ray, (iv) providing interactive function between PK and virtual world, (v) making better use of PK for virtual simulation, (vi) plug and play. The developed package will be of immense use for calculations involving radiation dose assessment in nuclear safety and contributing to fast radiation simulation for virtual nuclear facilities.

The Development of a Multi-Purpose Irradiator and the Characteristic of Dose Distribution (다목적 방사선 조사장치 개발 및 선량분포특성)

  • Lee, Dong-Hoon;Ji, Young-Hoon;Lee, Dong-Han;Kim, Yoon-Jong;Hong, Seung-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.42-48
    • /
    • 2002
  • The design, construction and performance test of a convenient multi-purpose irradiator is described. A multi-purpose irradiator using Cesium-137 has been developed for studies of low dose radiation effects in biology and for calibration of Thermo Luminescent dosimeter(TLD). During the operation, three rods of radioactive material which are 10cm in length revolve 180 degrees and irradiate biological samples, or TLD, and return to their shielded position, after the programmed time. A programmable Logic Controller(PLC) controls the sequence of operation, interlock, motor rotation and safety system. The rotation speed of biological samples can vary up to 20 RPM. A real time monitoring system was also incorporated to check and control the operation status of the irradiator. The capacity of the irradiation chamber was 4.5 liters. The isodose distribution at arbitrary vertical planes was measured by using film dosimetry. The dose-rate was 0.13 cGy/min in air and 0.11 cGy/min in water equivalent material in the case of Cesium-137. Range of activity was 2 Ci. The homogeneity of dose distribution in the chamber was ${\pm}$7%. The actual radiation level on the surface was within permissible levels. The irradiator had a maximum 0.35 mR/min radiation leakage on its surface.

Patient Setup Aid with Wireless CCTV System in Radiation Therapy (무선 CCTV 시스템을 이용한 환자 고정 보조기술의 개발)

  • Park, Yang-Kyun;Ha, Sung-Whan;Ye, Sung-Joon;Cho, Woong;Park, Jong-Min;Park, Suk-Won;Huh, Soon-Nyung
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.300-308
    • /
    • 2006
  • $\underline{Purpose}$: To develop a wireless CCTV system in semi-beam's eye view (BEV) to monitor daily patient setup in radiation therapy. $\underline{Materials\;and\;Methods}$: In order to get patient images in semi-BEV, CCTV cameras are installed in a custom-made acrylic applicator below the treatment head of a linear accelerator. The images from the cameras are transmitted via radio frequency signal (${\sim}2.4\;GHz$ and 10 mW RF output). An expected problem with this system is radio frequency interference, which is solved utilizing RF shielding with Cu foils and median filtering software. The images are analyzed by our custom-made software. In the software, three anatomical landmarks in the patient surface are indicated by a user, then automatically the 3 dimensional structures are obtained and registered by utilizing a localization procedure consisting mainly of stereo matching algorithm and Gauss-Newton optimization. This algorithm is applied to phantom images to investigate the setup accuracy. Respiratory gating system is also researched with real-time image processing. A line-laser marker projected on a patient's surface is extracted by binary image processing and the breath pattern is calculated and displayed in real-time. $\underline{Results}$: More than 80% of the camera noises from the linear accelerator are eliminated by wrapping the camera with copper foils. The accuracy of the localization procedure is found to be on the order of $1.5{\pm}0.7\;mm$ with a point phantom and sub-millimeters and degrees with a custom-made head/neck phantom. With line-laser marker, real-time respiratory monitoring is possible in the delay time of ${\sim}0.17\;sec$. $\underline{Conclusion}$: The wireless CCTV camera system is the novel tool which can monitor daily patient setups. The feasibility of respiratory gating system with the wireless CCTV is hopeful.

920 MHz Band Antenna for Marine Buoy (해양 부이용 920 MHz 대역 안테나)

  • Choi, Hyung-dong;Kim, Sung-yul;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.593-600
    • /
    • 2020
  • The equipment for marine IoT service have to overcome the effect of seawater. Furthermore, the free floating transmitter in seawater will be less affected by the seawater environment. The results of the design and fabrication of antenna, which is embedded in buoy, are shown in this research. The proposed antenna is used to supervise the states of fishing gears in monitoring system for real-name system of electric fishing gear. The selected frequency band of the proposed antenna is 920 MHz, and PCB pattern type is selected for subminiature and light weight. It is confirmed that RF characteristics is more degraded, however, the radiation is gradually upward as the contact surface of buoy with seawater is more broaden through the simulation results. That is, the RF performance of the proposed antenna is more deteriorated but beam radiation characteristics is more suited the marine IoT, the seawater effect is more increased. It is expected that the proposed antenna will contribute the implementation of IoT network based on low power wide area (LPWA) when the degradation of RF performance will be settled.

Practical Radiation Safety Control: (I) Application of Annual Limit on Intake and Derived Air Concentration (방사선안전관리 실무: (I) 연간섭취한도와 유도공기중농도의 적용)

  • Kim, Hyun Kee
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.234-236
    • /
    • 2013
  • Some of radioactive contamination is unavoidable in the facilities using the unsealed radioactive material. The primary purpose of radioactive contamination control in the workplace with contamination concern is the effects from the potential intake of radioactive material into the body. This paper provides procedures to estimate the level of internal exposure for the worker based on the conservative assumptions and simple calculations. They consist of two processes; to calculate air concentration of radioactive material and annual intake by inhalation with contaminated air and to compare each of them to Derived Air Concentration and Annual Limit on Intake mentioned in the related notification. The procedures are applicable to make a decision on practical requirements for monitoring air contamination and internal exposure of worker as follows; needs for measurement of air contamination and internal exposure and acquisition of information on the design of the ventilation system.

A Study on the millimeter-wave stimulation on acupuncture points and it′s biological effects (경혈의 밀리파 자극과 그 영향에 관한 연구)

  • Byeon, Mi-Kyeong;Han, Sang-Whi;Kim, Jung-Kuk;Huh, Woong;Park, Young-Bae
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.129-132
    • /
    • 2002
  • In this paper, we describe a millimeter-wave radiation system developed for stimulating acupuncture points, and an analyzing system developed for monitoring the change of physiological signals after the stimulation such as ECG, skin temperature, skin potential and skin resistance. The systems are to be used to investigate the treatment efficacy and biological effects of the millimeter-wave, and eventually, can be used to study the acupuncture meridian system theory in the traditional Korean medicine.

  • PDF

Photovoltaic System Output Forecasting by Solar Cell Conversion Efficiency Revision Factors (태양전지 변환효율 보정계수 도입에 의한 태양발전시스템 발전량 예측)

  • Lee Il-Ryong;Bae In-Su;Shim Hun;Kim Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.4
    • /
    • pp.188-194
    • /
    • 2005
  • There are many factors that affect on the system output of Photovoltaic(PV) power generation; the variation of solar radiation, temperature, energy conversion efficiency of solar cell etc. This paper suggests a methodology for calculation of PV generation output using the probability distribution function of irradiance, PV array efficiency and revision factors of solar cell conversion efficiency. Long-term irradiance data recorded every hour of the day for 11 years were used. For goodness-fit test, several distribution (unctions are tested by Kolmogorov-Smirnov(K-S) method. The calculated generation output with or without revision factors of conversion efficiency is compared with that of CMS (Centered Monitoring System), which can monitor PV generation output of each PV generation site.

Implementation of KV Cone Beam CT for Image Guided Radiation Therapy (영상유도 방사선치료에서의 KV 콘빔CT 이용)

  • Yoo, Young-Seung;Lee, Hwa-Jung;Kim, Dae-Young;Yu, Ri
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.43-49
    • /
    • 2007
  • Purpose: The aim of this study was the clinical implementation of IGRT using KV CBCT for setup correction in radiation therapy. Materials and Methods: We selected 9 patients (3 patient for each region; head, body, pelvis)and acquired 135 CBCT images with CLINAC iX (Varian medical system, USA). During the scan, the required time was measured. We analyzed the result in 3 direction; vertical, longitudinal, lateral. Results: The mean setup errors at the couch position of vertical, lateral, and longitudinal direction were 0.07, 0.12, and 0.1 cm in the head region, 0.3, 0.26, and 0.22 cm in the body region, 0.21, 0.18, and 0.15 cm in the pelvis region respectively. The mean time required for CBCT was $6{\sim}7$ minute. Conclusion: The CBCT on the LINAC provides the capacity for soft tissue imaging in the treatment position and real time monitoring during treatment delivery. With presented workflow, the setup correction within reasonable time for more accurate radiation therapy is possible. And it's image can be very useful for adaptive radiation therapy(ART) in the future with improved image quality.

  • PDF

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.