• Title/Summary/Keyword: Radiation monitoring system

Search Result 238, Processing Time 0.026 seconds

Real-time Environmental Radiation Monitoring System with Automatic Restoration of Backup Data in Site Detector via Communication using Radio Frequency (현장검출기에 저장된 백업데이터를 무선통신방식으로 자동 복원하는 실시간 환경선량 감시 시스템)

  • Lee, Wan-No;Kim, Eun-Han;Chung, Kun-Ho;Cho, Young-Hyun;Choi, Geun-Sik;Lee, Chang-Woo;Park, Ki-Hyun;Kim, Yun-Goo
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.255-261
    • /
    • 2003
  • An environmental radiation monitoring system based on high pressurized ionization chamber has been used for on-line gamma monitoring surrounding the KAERI (Korea Atomic Energy Research Institute), which transmits the dose data measured from ion chamber on the site via radio frequency to a central processing computer and stores the transmitted real-time data. Although communication using radio frequency has several advantages such as effective and economical transmission, storage, and data process, there is one main disadvantage that data loss during transmission often happens because of unexpected communication problems. It is possible to restore the loss data by off-line such as floppy disk but the simultaneous process and display of current data as well as the backup data are very difficult in the present on-line system. In this work, a new electronic circuit board and the operation software applicable to the conventional environmental radiation monitoring system are developed and the automatical synchronization of the ion chamber unit and the central processing computer is carried out every day. This system is automatically able to restore the backup data within 34 hours without additional equipments and also display together the current data as well as the transmitted backup data after checking time flag.

A Study on Display Data of Radiation Point at 3 Dimensions (3차원 공간상 방사선원 위치 정보 표현에 관한 연구)

  • Lee, Seung-Min;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1130-1132
    • /
    • 2007
  • In this research, 3D position exploring system was developed to detect direction and position of radiation source by using two general CCD camera. This system consists of a radiation detection device, a controlling device, and a monitoring device. A radiation detection device is composed of a collimator, a scintillator, CCD sensor, and radiation shielding part. Incident radiation is firstly collimated with direction and converted into visual lights in a scintillator. The CCD sensor detect the converted visual light and send a signal as an image. This can explore a radiation source with direction and distance from geometrical structure of two sensors. From these information, the developed 3D position exploring system can provide 3D radiation source information. This research will be useful for managing and processing radioactive materials in remote.

Development of a Portable Device Based Wireless Medical Radiation Monitoring System (휴대용 단말 기반 의료용 무선 방사선 모니터링 시스템 개발)

  • Park, Hye Min;Hong, Hyun Seong;Kim, Jeong Ho;Joo, Koan Sik
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.150-158
    • /
    • 2014
  • Radiation-related practitioners and radiation-treated patients at medical institutions are inevitably exposed to radiation for diagnosis and treatment. Although standards for maximum doses are recommended by the International Commission on Radiological Protection (ICPR) and the International Atomic Energy Agency (IAEA), more direct and available measurement and analytical methods are necessary for optimal exposure management for potential exposure subjects such as practitioners and patients. Thus, in this study we developed a system for real-time radiation monitoring at a distance that works with existing portable device. The monitoring system comprises three parts for detection, imaging, and transmission. For miniaturization of the detection part, a scintillation detector was designed based on a silicon photomultiplier (SiPM). The imaging part uses a wireless charge-coupled device (CCD) camera module along with the detection part to transmit a radiation image and measured data through the transmission part using a Bluetooth-enabled portable device. To evaluate the performance of the developed system, diagnostic X-ray generators and sources of $^{137}Cs$, $^{22}Na$, $^{60}Co$, $^{204}Tl$, and $^{90}Sr$ were used. We checked the results for reactivity to gamma, beta, and X-ray radiation and determined that the error range in the response linearity is less than 3% with regard to radiation strength and in the detection accuracy evaluation with regard to measured distance using MCNPX Code. We hope that the results of this study will contribute to cost savings for radiation detection system configuration and to individual exposure management.

Development of an Integrated Monitoring System for the Low and Intermediate Level Radioactive Waste Near-surface Disposal Facility (방사성폐기물 표층처분시설 통합 모니터링 시스템 개발)

  • Se-Ho Choi;HyunGoo Kang;MiJin Kwon;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • In this study, the function and purpose of the disposal cover, which is an engineering barrier installed to isolate the disposal vault of the near-surface disposal facility for radioactive waste from natural/man-made intrusion, and the design details of the demonstration facility for performance verification were described. The Demonstration facility was designed in a partially divided form to secure the efficiency of measurement while being the same as the actual size of the surface disposal facility to be built in the Intermediate & low-level radioactive waste disposal site of the Korea Radioactive Waste Agency (KORAD). The instruments used for measurement consist of a multi-point thermometer, FDR (Frequency Domain Reflectometry) sensor, inclinometer, acoustic sensor, flow meter, and meteorological observer. It is used as input data for the monitoring system. The 3D monitoring system was composed of 5 layers using the e-government standard framework, and was developed based on 4 components: screen, control module, service module, and DBIO(DataBase Input Output) module, and connected them to system operation. The monitoring system can provide real-time information on physical changes in the demonstration facility through the collection, analysis, storage, and visualization processes.

Development and evaluation of a compact gamma camera for radiation monitoring

  • Dong-Hee Han;Seung-Jae Lee;Hak-Jae Lee;Jang-Oh Kim;Kyung-Hwan Jung;Da-Eun Kwon;Cheol-Ha Baek
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2873-2878
    • /
    • 2023
  • The purpose of this study is to perform radiation monitoring by acquiring gamma images and real-time optical images for 99mTc vial source using charge couple device (CCD) cameras equipped with the proposed compact gamma camera. The compact gamma camera measures 86×65×78.5 mm3 and weighs 934 g. It is equipped with a metal 3D printed diverging collimator manufactured in a 45 field of view (FOV) to detect the location of the source. The circuit's system uses system-on-chip (SoC) and field-programmable-gate-array (FPGA) to establish a good connection between hardware and software. In detection modules, the photodetector (multi-pixel photon counters) is tiled at 8×8 to expand the activation area and improve sensitivity. The gadolinium aluminium gallium garnet (GAGG) measuring 0.5×0.5×3.5 mm3 was arranged in 38×38 arrays. Intrinsic and extrinsic performance tests such as energy spectrum, uniformity, and system sensitivity for other radioisotopes, and sensitivity evaluation at edges within FOV were conducted. The compact gamma camera can be mounted on unmanned equipment such as drones and robots that require miniaturization and light weight, so a wide range of applications in various fields are possible.

A wireless monitoring system for monocrystalline PV system

  • Kelebekler, Ersoy;Ergun, Riza Emre
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.123-134
    • /
    • 2020
  • Photovoltaic systems are progressively attached importance and their installed capacity increases day by day because of their reliability, decremented installation and operating cost and simple construction structure. Generated power obtained from a photovoltaic system changes depending upon regional distinctness, and It can be estimated approximately by taking into consideration mean global radiation amount, temperature and humidity. However, there may be different regional negative or positive factors like dust, air pollution, desert powder which affect generated power. The best reliable data for a region can be obtained from the existing photovoltaic system in the region. For this purpose, a monitoring system for 1000W monocrystalline photovoltaic system constructed at Kocaeli University Uzunciftlik Nuh Cimento Vocational High Scholl is prepared. The installed monitoring system shows and records real values generated from the photovoltaic system and environmental data. In the study, Instantaneous data obtained from the monitoring system for October 2018 and 7th October 2018 is given within figures. Additionally, daily and monthly total energy productions of the photovoltaic system are given for October 2018 and date interval between July 2018 and March 2018, respectively.

The Study on Design of Semiconductor Detector for Checking the Position of a Radioactive Source in an NDT (비파괴검사 분야에서 방사선원의 위치 확인을 위한 반도체 검출기 설계에 관한 연구)

  • Kim, Kyo-Tae;Kim, Joo-Hee;Han, Moo-Jae;Heo, Ye-Ji;Ahn, Ki-Jung;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.171-175
    • /
    • 2017
  • In the non-destructive inspection field, we invest a lot of time and resources in developing the radiation source system to ensure the safety of the workers. However, the probability of accidents is still high. In order to prevent potential radiation accidents in advance, it is necessary to directly verify the position of the radiation source, but the research is still insufficient. In this study, we developed a monitoring system that can detect the position of the radiation source in the source guide tube in the gamma-ray irradiator. The characteristics of the radiation detector are estimated by monte carlo simulation. As a result, the radiation detector for Ir-192 gamma-ray energy was analyzed to have secondary electron equilibrium at $150{\mu}m$ regardless of the semiconductor material. Also, it is expected that the gamma ray response characteristic is the best in $HgI_2$. These results are expected to be used as a basis for determining the optimal thickness of the radiation detector located in the detection part of the future monitoring system. In addition, when developing a monitoring system based on this, radiation workers can easily recognize the danger and secure safety, as well as prevent and preemptively respond to potential radiation accidents.

The Calculation of Response Matrix of 2-Dimensional Radiation Monitoring System Using EGS4 Simulation (EGS4 simulation을 이용한 2차원 방사선준위 분포측정 시스템의 Response Matrix 계산)

  • Kim, S.H.;Han, S.H.;Kang, H.D.;Kim, J.C.;Park, I.K.;Choi, Y.S.;Lee, Y.B.;Lee, J.M.
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.2
    • /
    • pp.127-133
    • /
    • 1997
  • In this study an EGS4 simulation code was used to calculate real energy spectrum from measured ${\gamma}$-ray energy spectrum obtained using 2-dimensional radiation monitoring system. As a result, the $39{\times}39$ response matrix was calculated the energy range of 0.1 to 2 MeV which energy interval of 50 keV The real energy spectrum for Co-60 radioisotope was calculated using inverse of response matrix. It was confirmed that the calculated response matrix was useful to the analysis of the measured energy spectrum for the radiation monitoring system.

  • PDF

Ubiquitous Radioactivity Care System (유비쿼터스 방사성 CARE 시스템에 관한 보고서)

  • Jung, Chang-Duk;Park, Chan-Hyuk;Hwang, Sun-Il
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.409-414
    • /
    • 2009
  • I have not seen each of the existing technology, RFID/USN technology combined with the wireless communication channel for the state of nuclear safety in real-time remote monitoring and operation system technology CARE existing radioactive accident information collected by the nuclear power and nuclear power status, 10-20 second intervals to monitor the safety network (SIDS), and nuclear power plants located on the site within 40 ㎞ radius around the 13~15 of the wind speed from the automatic weather network weather information such as rainfall and temperature every 10 minutes to collect as automatic weather network (REMDAS), Evaluation of atmospheric radiation and radiation of the bomb radiation impact assessment system to calculate the goodness (FADAS) and thicken the radiation-related information consists of real-time web technology to collect, the last robot on behalf of the human will to manage the nuclear power plant accident of the technology to prevent the concrete from the following narrative about to have.

  • PDF

Tritium( $^3$H) Activity Measurement by the Liquid Scintillation Counting Method

  • Hwang, Sun-Tae;Oh, Pil-Jae;Lee, Min-Kie;Kim, Wi-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.299-302
    • /
    • 1994
  • At a nuclear power plant, environmental radioactivity monitoring is routine work for the radiation safety management For the environmental monitoring of tritium($^3$H) activity in water sampled liquid scintillation counting( LSC) method is applied to measure low- energy beta activity from tritium in the samples. The $^3$H activity is measured using the BECKMAN 5801 system at the KRISS( Korea Research Institute of Standards and Science) for evaluating the lower limits of detection( LLD) of $^3$H measurement and the measuring capability of low-level $^3$H activity at four nuclear Power Plant sites. The LSC systems used for low-level $^3$H activity measurements at the nuclear Power Plants are confirmed to satisfy throughout an intercomparison study under the experimental arrangements by the KRISS.

  • PDF