• Title/Summary/Keyword: Radiation mapping image

Search Result 16, Processing Time 0.024 seconds

Radiation image mapping system (방사선 영상 매핑 장치)

  • 최영수;박순용;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1884-1887
    • /
    • 1997
  • The increasing concern over radiation exposure in the nuclear industry has fostered agrressive efforts to reduce the levels of radiation exposure. One area of the effot to reduce the radiation exposure is the development of a remote radiation monitoring system. Remote radiation monitoring can serve many benificaial functions reduce exposure to radiation by plant personnel, impruve the quality of the data that is collected and recognize the radiation environment easily. Radiation mapping system gives a good information that represents radiation level distribution. The system we have developed consists of a data acquistion parts, mobile robot and remote control parts. Data acquisition parts consist of radiation detection module and vision acquistion module which collect radiation data, visiion data and distance information. In remote control parts, the acquision data are processed and displayed. We have constructed radiation mapping image by overlaying the vision and radiation data. The radiation mapping techniques for displaying the results of the survey in an easily comprehendable form will facilitate a better understanding of the radiation environment in the facility. This system can reduce workers radiation exposure and aid to help work plan, so it has significant benifits in cost and safety.

  • PDF

Radiation level distribution monitoring system (방사선 분포 모니터링 시스템)

  • 최영수;박순용;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.828-831
    • /
    • 1996
  • Radiation monitoring system is needed at nuclear power plant and nuclear facility. Manual survey techniques are commonly used, but they are time consuming and somewhat inaccurate. Automatic radiation surveys are very important because it provides significant savings in men-rem and wages. Unmanned, remote automatic radiation measurement system should be small and light-weighted in order to mount on robotic system. The system we have developed consists of detection parts, signal processing part, interface, and software part. Position information is provided by using of a collimator. The measurement process is achieved by the scanning of detector and image processing techniques are used to display radiation levels. We designed collimators, detectors, signal processing circuit, and constructed prototype system. The goal of this system is the mapping of camera image and radiation level distribution.

  • PDF

A way Analyzing Oxide Layer on an Irradiated CANDU-PHWR Pressure Tube Using an EPMA and X-ray Image Mapping

  • Jung, Yang Hong;Kim, Hee Moon
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.118-128
    • /
    • 2021
  • The oxide layer in samples taken from an irradiated Zr-2.5Nb pressure tube from a CANDU-PHWR reactor was analyzed using electron probe microanalysis (EPMA). The examined tube had been exposed to temperatures ranging from 264 to 306 ℃ and a neutron fluence of 8.9 × 1021 n/cm2 (E > 1 MeV) for the maximum 10 effective full-power years in a nuclear power plant. Measuring oxide layer thickness generally employs optical microscopy. However, in this study, analysis of the oxide layer from the irradiated pressure tube components was undertaken through X-ray image mapping obtained using EPMA. The oxide layer characteristics were analyzed by X-ray image mapping with 256 × 256 pixels using EPMA. In addition, the slope of the oxide layer was measured for each location. A particular advantage of this study was that backscattered electrons and X-ray image mapping were obtained at a magnification of 9,000 when 20 kV volts and 30 uA of current were applied to radiation-shielded EPMA. The results of this study should usefully contribute to the study of the oxide layer properties of various types of metallic materials irradiated by high radiation in nuclear power plants.

ANALYSIS BY SYNTHESIS FOR ESTIMATION OF DOSE CALCULATION WITH gMOCREN AND GEANT4 IN MEDICAL IMAGE

  • Lee, Jeong-Ok;Kang, Jeong-Ku;Kim, Jhin-Kee;Kim, Bu-Gil;Jeong, Dong-Hyeok
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.146-148
    • /
    • 2012
  • The use of GEANT4 simulation toolkit has increased in the radiation medical field for the design of treatment system and the calibration or validation of treatment plans. Moreover, it is used especially on calculating dose simulation using medical data for radiation therapy. However, using internal visualization tool of GEANT4 detector constructions on expressing dose result has deficiencies because it cannot display isodose line. No one has attempted to use this code to a real patient's data. Therefore, to complement this problem, using the result of gMocren that is a three-dimensional volume-visualizing tool, we tried to display a simulated dose distribution and isodose line on medical image. In addition, we have compared cross-validation on the result of gMocren and GEANT4 simulation with commercial radiation treatment planning system. We have extracted the analyzed data of dose distribution, using real patient's medical image data with a program based on Monte Carlo simulation and visualization tool for radiation isodose mapping.

Intelligent Nuclear Material Diagnosis System Using SOM-PAK (SOM-PAK을 이용한 지능형 핵물질 거동진단 시스템)

  • 송대용;이상윤;하장호;고원일;김호동
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.135-144
    • /
    • 2003
  • In this paper, the implementation techniques of intelligent nuclear material surveillance system based on the SOM(Self Organized Mapping) was described. Unattended continuous surveillance systems for nuclear facility result in large amounts of data, which require much time and effort to inspect. Therefore, it is necessary to develop system that automatically pinpoints and diagnoses the anomalies from data. In this regards, this paper presents a novel concept of a continuous surveillance system that integrates visual image and radiation data by the use of neural networks based on self-organized feature mapping

  • PDF

Study of Radiation Mapping System for Water Contamination in Water System (방사능 수치 오염 지도 작성을 위한 방사선 계측 시스템 연구)

  • Na, Teresa W.;Kim, Han Soo;Yeon, Jei Won;Lee, Rena;Ha, Jang Ho
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.185-189
    • /
    • 2011
  • As nuclear industry has been developed, a various types of radiological contamination has occurred. After 9.11 terror in U.S.A., it has been concerned that terrorists' active area has been enlarged to use nuclear or radioactive substance. Recently, the most powerful earth-quake stroke, which triggered a massive tsunami in Japan and then Fukushima nuclear power plant reactor has suffered from a serious accident in history. The Fukushima reactor accident has occurred an anxiety of radiation leaks and about 170,000 people have been evacuated from the accidental area near the nuclear power plant. For these reasons, a social chaos can be occurred if radiological contamination occurs to the supply system for the drinking water. As such, the establishment of the radiation monitoring system for the city main water system is compelling for the national security. In this study, a feasibility test of radiation monitoring system which consists of unified hybrid-type radiation detectors was experimented for multi detection system by using gamma-ray imaging. The hybrid-type radiation sensors were fabricated with CsI(Tl) scintillators and photodiodes. A preamplifier and amplifier was also fabricated and assembled with the sensor in the shielding case. For the preliminary test of detection of radiological contamination in the river, multi CsI(Tl)-PIN photodiode radiation detectors and $^{137}Cs$ gamma-ray source were used. The DAQ was done by Linux based ROOT program and NI DAQ system with Labview program. The simulated contamination was assumed to be occurred at Gapcheon river in Daejeon city. Multi CsI(Tl)-PIN photodiode radiation detectors were positioned at the Gapcheon river side. Assuming that the radiological contaminations flows in the river the $^{137}Cs$ gamma-ray source has been moved and then, the contamination region was reconstructed.

Linearized Methods for Quantitative Analysis and Parametric Mapping of Brain PET (뇌 PET 영상 정량화 및 파라메터영상 구성을 위한 선형분석기법)

  • Kim, Su-Jin;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.78-84
    • /
    • 2007
  • Quantitative analysis of dynamic brain PET data using a tracer kinetic modeling has played important roles in the investigation of functional and molecular basis of various brain diseases. Parametric imaging of the kinetic parameters (voxel-wise representation of the estimated parameters) has several advantages over the conventional approaches using region of interest (ROI). Therefore, several strategies have been suggested to generate the parametric images with a minimal bias and variability in the parameter estimation. In this paper, we will review the several approaches for parametric imaging with linearized methods which include graphical analysis and mulilinear regression analysis.

The effects of image acquisition control of digital X-ray system on radiodensity quantification

  • Seong, Wook-Jin;Kim, Hyeon-Cheol;Jeong, Soocheol;Heo, Youngcheul;Song, Woo-Bin;Ahmad, Mansur
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.3
    • /
    • pp.146-153
    • /
    • 2013
  • Objectives: Aluminum step wedge (ASW) equivalent radiodensity (eRD) has been used to quantify restorative material's radiodensity. The aim of this study was to evaluate the effects of image acquisition control (IAC) of a digital X-ray system on the radiodensity quantification under different exposure time settings. Materials and Methods: Three 1-mm thick restorative material samples with various opacities were prepared. Samples were radiographed alongside an ASW using one of three digital radiographic modes (linear mapping (L), nonlinear mapping (N), and nonlinear mapping and automatic exposure control activated (E)) under 3 exposure time settings (underexposure, normal-exposure, and overexposure). The ASW eRD of restorative materials, attenuation coefficients and contrasts of ASW, and the correlation coefficient of linear relationship between logarithms of gray-scale value and thicknesses of ASW were compared under 9 conditions. Results: The ASW eRD measurements of restorative materials by three digital radiographic modes were statistically different (p = 0.049) but clinically similar. The relationship between logarithms of background corrected grey scale value and thickness of ASW was highly linear but attenuation coefficients and contrasts varied significantly among 3 radiographic modes. Varying exposure times did not affect ASW eRD significantly. Conclusions: Even though different digital radiographic modes induced large variation on attenuation of coefficient and contrast of ASW, E mode improved diagnostic quality of the image significantly under the underexposure condition by improving contrasts, while maintaining ASW eRDs of restorative materials similar. Under the condition of this study, underexposure time may be acceptable clinically with digital X-ray system using automatic gain control that reduces radiation exposure for patient.

A Study on the Image Optimization for Digital Vision Measurement (디지털 영상 계측을 위한 이미지 최적화 연구)

  • Kim, Kwang-Yeom;Yoon, Hyo-Kwan;Kim, Chang-Yong;Yim, Sung-Bin;Choi, Chang-Ho;Lee, Seung-Do
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.421-433
    • /
    • 2010
  • The digital images to be used for digital vision measurement like digital face mapping and photogrammetric monitoring in construction could be influenced by various conditions such as a kind of light, the intensity of radiation, camera set-up and so on. Because it is very difficult to assess the rock mass from the digital images acquired under different circumstances, some tests and analysis are carried out to modify the images to be suitable and consistent for the digital image optimization. As a result, the recommended conditions for the acquisition of optimized digital images are suggested.

The radiation shielding proficiency and hyperspectral-based spatial distribution of lateritic terrain mapping in Irikkur block, Kannur, Kerala

  • S. Arivazhagan;K.A. Naseer;K.A. Mahmoud;N.K. Libeesh;K.V. Arun Kumar;K.ChV. Naga Kumar;M.I. Sayyed;Mohammed S. Alqahtani;E. El Shiekh;Mayeen Uddin Khandaker
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3268-3276
    • /
    • 2023
  • The practice of identifying the potential zones for mineral exploration in a speedy and low-cost method includes the use of satellite imagery analysis as a part of remote sensing techniques. It is challenging to explore the iron mineralization of a region through conventional methods which are a time-consuming process. The current study utilizes the Hyperion satellite imagery for mapping the iron mineralization and associated geological features in the Irikkur region, Kannur, Kerala. Along with the remote sensing results, the field study and laboratory-based analysis were conducted to retrieve the ground truth point and geochemical proportion to verify the iron ore mineralization. The MC simulation showed for shielding properties indicate an increase in the linear attenuation coefficient with raising the Fe2O3+SiO2 concentrations in the investigated rocks where it is varied at 0.662 MeV in the range 0.190 cm-1 - 0.222 cm-1 with rising the Fe2O3+SiO2 content from 57.86 wt% to 71.15 wt%. The analysis also revealed that when the γ-ray energy increased from 0.221 MeV to 2.506 MeV, sample 1 had the largest linear attenuation coefficient, ranging from 9.33 cm1 to 0.12 cm-1. Charnockite rocks were found to have exceptional shielding qualities, making them an excellent natural choice for radiation shielding applications.