• 제목/요약/키워드: Radiation heat loss

검색결과 163건 처리시간 0.026초

세균 포자의 안정성에 미치는 이온 강도의 영향 (Effect of Ionic Stress on the Stability of Bacterial Spores)

  • 이종욱
    • Applied Biological Chemistry
    • /
    • 제19권2호
    • /
    • pp.75-81
    • /
    • 1976
  • 세균포자의 안정성과 관련하여 DPA-Ca-spore complex의 해리에 영향을 주는 여러 요인중 15%까지의 NaCl 농도에 의해서 이루어 지는 높은 이온 강도의 효과에 대하여 실험하고 다음과 같이 결론을 얻었다. 1) NaCl에 의한 포자 현탁액중의 이온강도의 변화는 포자로 부터 Ca-DPA의 해리를 촉진시켜 주며 이런 현상은 포자의 열 저항성을 감소시키고 따라서 보관중 포자의 안정성이 상당히 저하 되었다. 2) 세포질의 membrane은 포자내에서 Ca-DPA의 안정성을 유지하는데 permeability barrier로써 중요한 역할을 한다.

  • PDF

다공질 내부의 연소현상에 대한 수치적 연구( I ) (A Numerical Study on the Combustion Phenmena in Porous Media( I ))

  • 이용일;신현동
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.328-335
    • /
    • 1996
  • The one-dimensional flame analysis was carried out to understand the combustion phenomena in porous media. The downstream as well as upstream solution corresponding to upper and lower solutions could be obtained. While upper flame temperature gets higher, lower flame temperature gets lower, as the flame approaches the central part of the combustor. The reason why upstream flame and downstream flame exist at the same flow condition is that the regions where net heat recirculation is identical exist in upstream and downstream of the combustor. In order for the downstream flame to be stabilized, more heats needed to be recirculated towards upstream because of larger radiation loss of downstream flame.

Thermal effect on dynamic performance of high-speed maglev train/guideway system

  • Zhang, Long;Huang, JingYu
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.459-473
    • /
    • 2018
  • Temperature fields and temperature deformations induced by time-varying solar radiation, shadow, and heat exchange are of great importance for the ride safety and quality of the maglev system. Accurate evaluations of their effects on the dynamic performances are necessary to avoid unexpected loss of service performance. This paper presents a numerical approach to determine temperature effects on the maglev train/guideway interaction system. Heat flux density and heat transfer coefficient of different components of a 25 m simply supported concrete guideway on Shanghai High-speed Maglev Commercial Operation Line is calculated, and an appropriate section mesh is used to consider the time-varying shadow on guideway surfaces. Based on the heat-stress coupled technology, temperature distributions and deformation fields of the guideway are then computed via Finite Element method. Combining guideway irregularities and thermal deformations as the external excitations, a numerical maglev train/guideway interaction model is proposed to analyze the temperature effect. The responses comparison including and excluding temperature effect indicates that the temperature deformation plays an important role in amplifying the response of a running maglev, and the parameter analysis results suggest that climatic and environmental factors significantly affect the temperature effects on the coupled maglev system.

초고압 전력기기의 온도상승 예측 (Prediction of Temperature Rise in Power Appratus)

  • 김승욱;박정홍;한성진;이병윤;박경엽;송원표;김정배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.113-115
    • /
    • 2001
  • In order to design the power appratus such ac bus bar, the current carrying ampacity should be determined, Since it is limited by maxium operating temperature, it is very important to predict temperature-rise on it. The main causes to raise temperature are joule's loss in the current carrying conductor and induced circulating and eddy current in the tank. The heat transfer is divided into convection and radiation on boundary, determining convection heat transfer coefficient is not easy. This paper propose a new technique that can be used to estimate the temperature rise in the extra high voltage bus bar. The heat transfer coefficient is analytically calculated by applying Nusselt Number depending on temperature as well as model geometry. The analytic method which use heat transfer coefficient is coupled with finite element method. The temperature distribution in the bus bar by the proposed method shows good agreement with experimental data.

  • PDF

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

전산유체 해석을 통한 슬림형 이중외피 창호의 태양열 취득량 분석 - 높은 태양고도 및 하절기 냉방조건에서의 자연환기구 적용 및 창문 조절 방식별 비교 - (Numerical analysis of solar heat gain on slim-type double-skin window systems - Heat transfer phenomena with opening of windows and vent slot in summer condition -)

  • 박지호;오은주;조동우;조경주;유정연
    • KIEAE Journal
    • /
    • 제17권1호
    • /
    • pp.69-75
    • /
    • 2017
  • Purpose: Heat transfer analysis of recently developed 'slim type double-skin system window' were presented. This window system is designed for curtain wall type façade that main energy loss factor of recent elegant buildings. And the double skin system is the dual window system integrated with inner shading component, enclosed gap space made by two windows when both windows were closed and shading component effectively reflect and terminate solar radiation from outdoor. Usually double-skin system requires much more space than normal window systems but this development has limited by 270mm, facilitated for curtain wall façade buildings. In this study, we estimated thermophysical phenomena of our double-skin curtain wall system window with solar load conditions at the summer season. Method: A fully 3-Dimentional analysis adopted for flow and convective and radiative heat transfer. The commercial CFD package were used to model the surface to surface radiation for opaque solid region of windows' frame, transparent glass, fluid region at inside of double-skin and indoor/outdoor environments. Result: Steep angle of solar incident occur at solar summer conditions. And this steep solar ray cause direct heat absorption from outside of frame surface rather than transmitted through the glass. Moreover, reflection effect of shading unit inside at the double-skin window system was nearly disappeared because of solar incident angle. With this circumstances, double-skin window system effectively cuts the heat transfer from outdoor to indoor due to separation of air space between outdoor and indoor with inner space of double-skin window system.

디지털 적외선 체열 검사를 사용한 하치조 신경 손상의 평가 (ASSESSMENT OF INFERIOR ALVEOLAR NERVE DAMAGE USING DIGITAL INFRARED THERMOGRAPHIC IMAGING)

  • 이지연;이재훈;김철환
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권6호
    • /
    • pp.488-496
    • /
    • 2004
  • Oral & Maxillofacial surgery can lead to complications that result in abnormal sensation or movement. Inferior alveolar nerve(IAN) injury can result in dysesthesia, paresthsia of the lower lip and chin, so patients presenting with IAN damage suffer from sensory loss. But diagnosis of the nerve injury is largely limited to the subjective statements made by the patient. Distribution of sympathetic nerves parallels the distribution of the somatosensory nerves. Loss of sensory tone causes a concomitant loss of sympathetic activity, resulting in vasodilation of the cutaneous blood vessels that demonstrates greater heat loss. Digital infrared thermographic imaging(DITI) detects infra-red radiation given off by body. DITI can detect minute difference in temperature from different parts of the body and translates the amount of heat into quantitative data. The area of different temperature correlated with pain or disease can be visualized by corresponding color. The objective of this study was to determine the efficacy of DITI in objectively assessing IAN injury. The 19 normal subjects and the 14 patients underwent DITI scan. The normal subjects received unilateral IAN block anesthesia with 2 ml of 2% lidocaine (IAN bolck group) to evaluate temporary alteration in nerve function. Patient group were patients with unilateral IAN damage (dysesthesia or paresthesia) after surgical treatment(Mn. 3rd molar Extraction, etc.). The surgical procedure performed within 6 months of test. The results were as follows. 1. No significant differences in temperature were found between left and right sides of the lower lip and chin in the control group. 2. Significant temperature differences were found between the anesthetized and non-anesthetized sides of the lower lip and chin in the IAN block group. 3. Significant temperature differences were found between the involved and uninvolved sides of the lower lip and chin areas of the experimental group. The results of the study show that DITI can be an useful and effective means of objectively assessing and visualizing IAN damage.

BES를 이용한 온실용 보온커튼의 관류열전달계수 산정 (Evaluation of Overall Heat Transfer Coefficient of Different Greenhouse Thermal Screens Using Building Energy Simulation)

  • 라쉬드아드난;이종원;이현우
    • 생물환경조절학회지
    • /
    • 제27권4호
    • /
    • pp.294-301
    • /
    • 2018
  • 겨울철에 열손실을 줄이기 위해 많은 온실에서 보온커튼을 사용하고 있다. 그러나 적절한 보온커튼을 선택할 때 판단 자료로 활용할 수 있는 명확한 기준이 없는 실정이며 이를 위해서는 보온재의 보온 특성에 대한 정량적인 값이 필요하다. 본 연구에서는 BES를 사용하여 보온커튼의 관류열전달계수를 산정하는 시뮬레이션 모델을 개발하였다. 일중 및 이중 PE필름 피복에 대한 관류열전달계수의 실험값을 사용하여 시뮬레이션 결과를 검증하였다. 검증된 모델을 사용하여 문헌에서 제시된 각종 열적 특성을 가진 보온커튼에 대한 관류열전달계수를 산정하고 비교분석하였다. 개발된 시뮬레이션 모델은 다양한 보온커튼의 관류열전달계수를 산정하는 데 활용될 수 있을 것이며, 제시된 관류열전달계수는 보온커튼의 성능을 정량적으로 비교하는데 유용하게 활용될 수 있을 것으로 판단된다.

물유리와 이산화탄소로 가압함침한 가문비 나무의 연소특성 (Combustion Characteristics of Spruce Wood by Pressure Impregnation with Waterglass and Carbon Dioxide)

  • 박형주;이세명
    • 한국화재소방학회논문지
    • /
    • 제26권4호
    • /
    • pp.18-23
    • /
    • 2012
  • 이산화탄소 주조법에서 사용되고 있는 방법을 응용하여 목질내에 규산겔과 탄산소다, 이산화규소가 석출된 목재를 제조한 후 외부 복사열원(20, 25, 35 및 50 $kW/m^2$)에 따른 점화시간, 점화온도, 질량감소속도, 임계열유속을 측정하였다. 연구결과, 물유리와 이산화탄소를 이용한 가압함침 처리된 목재는 Pre-Flashover 단계에서의 복사열원(20 $kW/m^2$ 이하)에서 난연성능이 있음을 확인할 수 있었다. 향후 지속적인 연구를 통해 우수한 배합비율을 찾는다면 난연목재로서의 활용가능성이 있다고 판단된다.

Effect of multiple-failure events on accident management strategy for CANDU-6 reactors

  • YU, Seon Oh;KIM, Manwoong
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3236-3246
    • /
    • 2021
  • Lessons learned from the Fukushima Daiichi nuclear power plant accident directed that multiple failures should be considered more seriously rather than single failure in the licensing bases and safety cases because attempts to take accident management measures could be unsuccessful under the high radiation environment aggravated by multiple failures, such as complete loss of electric power, uncontrollable loss of coolant inventory, failure of essential safety function recovery. In the case of the complete loss of electric power called station blackout (SBO), if there is no mitigation action for recovering safety functions, the reactor core would be overheated, and severe fuel damage could be anticipated due to the failure of the active heat sink. In such a transient condition at CANDU-6 plants, the seal failure of the primary heat transport (PHT) pumps can facilitate a consequent increase in the fuel sheath temperature and eventually lead to degradation of the fuel integrity. Therefore, it is necessary to specify the regulatory guidelines for multiple failures on a licensing basis so that licensees should prepare the accident management measures to prevent or mitigate accident conditions. In order to explore the efficiency of implementing accident management strategies for CANDU-6 plants, this study proposed a realistic accident analysis approach on the SBO transient with multiple-failure sequences such as seal failure of PHT pumps without operator's recovery actions. In this regard, a comparative study for two PHT pump seal failure modes with and without coolant seal leakage was conducted using a best-estimate code to precisely investigate the behaviors of thermal-hydraulic parameters during transient conditions. Moreover, a sensitivity analysis for different PHT pump seal leakage rates was also carried out to examine the effect of leakage rate on the system responses. This study is expected to provide the technical bases to the accident management strategy for unmitigated transient conditions with multiple failures.