• 제목/요약/키워드: Radiation fluxes

검색결과 126건 처리시간 0.027초

고압 나트륨 방전에서의 아아크 플라즈마 모델 해석에 관한 연구 (A Study on the Analysis of Arc Plasma Model in the HPS Discharge)

  • 지철근;염정덕
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.220-223
    • /
    • 1988
  • A the dependent model for wail-stabilized local thermodynamic equilibrium (LTE) arcs has been used to examine the high-pressure sodium vapor arc. Arc properties including temperature, electrical conductivity, and optically thick and optically thin radiation fluxes were calculated as functions of radius and time.

  • PDF

해양부이 자료를 이용한 황해 남동부 해역 표층 열속 산출 (Calculation of Surface Heat Flux in the Southeastern Yellow Sea Using Ocean Buoy Data)

  • 김선복;장경일
    • 한국해양학회지:바다
    • /
    • 제19권3호
    • /
    • pp.169-179
    • /
    • 2014
  • 황해 남동부 해역에 설치한 해양부이(YSROB)에서 약 27개월간 관측된 장파, 단파 복사량을 포함한 대기, 해양 변수와 COARE 3.0 알고리즘을 이용하여 월평균 해양-대기간 열속을 산출하고 기존 연구결과와 비교하였다. YSROB 위치에서 열속은 순 단파복사(Qi)에 의해 해양은 대기로부터 열을 얻고 순 장파복사($Q_b$), 현열($Q_h$), 잠열($Q_e$)에 의해서 열손실이 일어난다. 전체 열손실 중 $Q_e$에 의한 손실이 51%로 가장 크게 나타났으며 $Q_b$$Q_h$에 의한 손실은 각각 34%, 15% 이다. 순열속($Q_n$)은 $Q_i$가 최대인 5월에 최대($191.4W/m^2$)이며 모든 열속 성분이 최소인 12월에 최소($-264.9W/m^2$)이다. 연평균 $Q_n$$1.9W/m^2$ 이지만 관측기기의 정확도에 의한 오차산정 결과(최대 ${\pm}19.7W/m^2$)를 고려하면 무시할 정도로 작다. YSROB과 동일한 위치에서의 기존 월별 열속 산출 결과는 YSROB에서 실측값에 기반한 열속에 비해 여름철 $Q_i$가 약 $10{\sim}40W/m^2$ 과소 평가된 반면에 겨울철에는 $Q_e$$Q_h$에 의한 열 손실이 각각 약 $50W/m^2$, $30{\sim}70W/m^2$ 과다하게 산출되었다. 이로 인하여 해양이 열을 얻는 4월~8월에는 기존 연구에서의 열 획득량이 본 연구 결과보다 적게 나타나며, 해양이 열을 잃는 겨울철에는 기존 연구에서의 해양으로부터의 열 손실이 본 연구 결과에 비해 크게 나타난다. 특히, 12월과 1월의 $Q_n$ 차이는 약 $70{\sim}130W/m^2$에 달한다. 장기적인 재분석장(MERRA) 분석 결과에 의하면 이와 같은 월평균 열속의 차이는 연변동 등 시간 변동에 의한 것이 아니라 열속 산출 시 사용된 자료의 부정확성에 기인하는 것으로 판단된다. 본 연구 결과로부터 기존의 기후적인 열속을 연구에 활용하거나 수치모델에 사용함에 있어 주의가 요망된다.

국내 태양에너지 자원 정밀분석 (A Detailed Analysis of Solar Radiation Resources in Korea)

  • 조덕기;윤창열;김광득;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.63.1-63.1
    • /
    • 2010
  • Since the solar energy resource is the main input for sizing any solar photovoltaic system and solar thermal power system, it is essential to utilize the solar radiation data as a application and development of solar energy system increase. It will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 at 16 different locations in Korea and for the more detailed analysis, Images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth's surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. From the results, the measured data has been collected at 16 different stations and estimated using satellite at 23 different stations over the South Korea from 1982 to 2009. The Result of analysis shows that the annual-average daily global radiation on the horizontal surface is $3.56kWh/m^2/day$.

  • PDF

1,300 MWe 가압경수로 공동내에서의 중성자 흐름해석 (Neutron Streaming Analysis in 1300 MWe Pressurized Water Reactor Cavity)

  • 권석근;김경응
    • Journal of Radiation Protection and Research
    • /
    • 제10권1호
    • /
    • pp.41-49
    • /
    • 1985
  • 1,300 MWe 가압경수로 공동내에서 중성자의 흐름해석이 수행되었다. 중성자의 흐름을 해석하는데는 1차원 수송코드인 ANISN, 2차원 수송코드인 DOT3.5, 3차원 Monte Carlo 코드인 TRIPOLI-02와 이들을 접속시켜주는 DOTTRI 등의 전산코드가 이용되었고, 본 계산에 사용된 전산기는 IBM 3033형이었다. 계산된 선속 및 선량율은 900 MW 가압경수로의 공동내에서 측정한 측정치와 비교검토 되었고, 그 결과 중성자 군별로 약간의 오차는 있었으나 전체적으로 큰 오차는 없었다. 이 결과는 대용량의 원자로 차폐설계, 원자로보수시, 기타 원자로 공동내에 출입할 경우에 방사선방어상 필요한 방어수단을 제공하는데 기여하였다.

  • PDF

Radiation-Laminar Free Convection in a Square Duct with Specular Reflection by Absorbing-Emitting Medium

  • Byun, Ki-Hong;Im, Moon-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1346-1354
    • /
    • 2002
  • The purpose of this work is to study the effects of specularly reflecting wall under the combined radiative and laminar free convective heat transfer in an infinite square duct. An absorbing and emitting gray medium is enclosed by the opaque and diffusely emitting walls. The walls may reflect diffusely or specularly. Boussinesq approximation is used for the buoyancy term. The radiative heat transfer is evaluated using the direct discrete ordinates method. The parameters under considerations are Rayleigh number, conduction to radiation parameter, optical thickness, wall emissivity and reflection mode. The differences caused by the reflection mode on the stream line, and temperature distribution and wall heat fluxes are studied. Some differences are observed for the categories mentioned above if the order of the conduction to radiation parameter is less than order of 10$\^$-3/ fer the range of Rayleigh number studied. The differences at the side wall heat flux distributions are observed as long as the medium is optically thin. As the top wall emissivity decreases, the differences between these two modes are increased. As the optical thickness decreases at the fixed wall emissivity, the differences also increase. The difference of the streamlines or the temperature contours is not as distinct as the side wall heat flux distributions. The specular reflection may alter the fluid motion.

Focal Plane Damage Analysis by the Space Radiation Environment in Aura Satellite Orbit

  • Ko, Dai-Ho;Yeon, Jeoung-Heum;Kim, Seong-Hui;Yong, Sang-Soon;Lee, Seung-Hoon;Sim, Enu-Sup;Lee, Cheol-Woo;De Vries, Johan
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.28.1-28.1
    • /
    • 2011
  • Radiation-induced displacement damage which has caused the increase of the dark current in the focal plane adopted in the Ozone Monitoring Instrument (OMI) was studied in regards of the primary protons and the secondaries generated by the protons in the orbit. By using the Monte Carlo N-Particle Transport Code System (MCNPX) version 2.4.0 along with the Stopping and Range of Ions in Matter version 2010 (SRIM2010), effects of the primary protons as well as secondary particles including neutron, electron, and photon were investigated. After their doses and fluxes that reached onto the charge-coupled device (CCD) were examined, displacement damage induced by major sources was presented.

  • PDF

가열 수직 평판과 마주보는 전자모듈의 복사 및 대류 냉각에 대한 실험적 고찰 (Experimental Study on the Radiative and Convective Cooling of Electronic Modules opposed to a Heated Vertical Plate)

  • 최인수
    • 한국산업융합학회 논문집
    • /
    • 제8권2호
    • /
    • pp.105-112
    • /
    • 2005
  • The characteristics of natural convection heat transfer combined with radiation in a vertical parallel plates has been investigated experimentally. The vertical channel is consisted with a heated wall and three protruding heating sources attached on the opposite wall. The cooling of modules has been experimented with heating the wall as well as modules themselves at different aspects ratios and heating fluxes. As the location of module is higher, the temperature becomes higher, but the increasement is smaller. When the aspect ratio is lower than 26, its effect on the temperature is not significant rather than that of the radiation heat transfer. Furthermore, the correlation of Nusselt number with the Rayleigh number are attempted, but additional treatment is needed to accomodate the cases of heating module and/or opposite wall.

  • PDF

A PDR model for UV heated outflow walls around protostars

  • 이석호;이정은;박용선
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.114.2-114.2
    • /
    • 2011
  • We have developed a PDR code to reproduce the high rotational transitions of CO observed with Herschel-PACS. Part of these high-J CO line emission is produced by UV heated outflow walls around protostars. The local FUV radiation flux is calculated by using Monte Carlo method in (${\gamma}$, ${\alpha}$) grid taking anisotropic scattering into account. Kinetic temperature and Abundance of molecules were computed self-consistently. CO Line fluxes are calculated using RIG. We compare our PDR model with the results by Visser et al (2011) to show that the derived FUV radiation field strength can be affected by the grid resolution near the outflow wall and dust scattering.

  • PDF

Observational determination of the electron flux boundary conditions of the radiation belt as a function of solar wind condition

  • 이대영;신대규
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.134.1-134.1
    • /
    • 2012
  • The radiation belt structure can be approximately reproduced by a form of diffusion equation, which takes into account the radial diffusion process as well as those in pitch angle and energy. The solution of the equation depends on several factors including initial and boundary conditions, diffusion coefficients, and plasmapause location. In this paper, we have attempted to determine a set of approximate functions for the energetic electron fluxes near the outer edge of the outer belt in terms of solar wind variable. We used the electron flux data from SST onboard the THEMIS spacecraft and determined its correlation with solar wind conditions in a systematic way. The functions were determined separately for different energy channels from ~30 keV up to 719 keV. Our determination of these functions allows us to predict the radial boundary condition for the electron flux, which can be implemented in a forecast model.

  • PDF

APPLICATION OF REMOTE SENSING IMAGERY ON THE ESTIMATE OF EVAPOTRANSPIRATION OVER PADDY FIELD

  • Chang, Tzu-Yin;Chien, Tzu-Chieh;Liou, Yuei-An
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.752-755
    • /
    • 2006
  • Evaportranspiration is an important factor in hydrology cycle. Traditionally, it is measured by using basin or empirical formula with meteorology data, while it does not represent the evaportranspiration over a regional area. With the advent of improved remote sensing technology, it becomes a surface parameter of research interest in the field of remote sensing. Airborne and satellite imagery are utilized in this study. The high resolution airborne images include visible, near infrared, and thermal infrared bands and the satellite images are acquired by MODIS. Surface heat fluxes such as latent heat flux and sensible heat flux are estimate by using airborne and satellite images with surface meteorological measurements. We develop a new method to estimate the evaportranspiration over the rice paddy. The surface heat fluxes are initialized with a surface energy balance concept and iterated for convergent solution with atmospheric correct functions associated with aerodynamic resistance of heat transport. Furthermore, we redistribute the total net energy into sensible heat and latent heat fluxes. The result reveals that radiation and evaporation controlled extremes can be properly decided with both airborne and satellite images. The correlation coefficient of latent heat flux and sensible heat flux with corresponding in situ observations are 0.66 and 0.76, respectively. The relative root mean squared errors (RMSEs) for latent heat flux and sensible heat flux are 97.81 $(W/m^2)$ and 124.33 $(W/m^2)$, respectively. It is also shown that the newly developed retrieval scheme performs well when it is tested by using MODIS date.

  • PDF