• Title/Summary/Keyword: Radiation fluxes

Search Result 126, Processing Time 0.024 seconds

EVALUATION OF SURFACE HEAT FLUXES FOR DIFFERENT LAND COVER IN HEAT ISLAND EFFECT

  • Chang, Tzu-Yin;Liao, Lu-Wei;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.68-71
    • /
    • 2008
  • Our goal is to obtain a better scientific understanding how to define the nature and role of remotely sensed land surface parameters and energy fluxes in the heat island phenomena, and local and regional weather and climate. By using the MODIS visible and thermal imagery data and analyzing the surface energy flux images associated with the change of the landcover and landuse in study area, we will estimate and present how significant is the magnitude of the heat island heat effect and its relation with the surface parameters and the energy fluxes in Taiwan. To achieve our objective, we used the energy budget components such as net radiation, soil heat flux, sensible heat flux, and latent heat flux in the study area of interest derived form remotely sensed data to understand the island heat effect. The result shows that the water is the most important component to decrease the temperature, and the more the consumed net radiation to latent heat, the lower urban surface temperature.

  • PDF

Temporal and spatial distributions of heat fluxes in the East Sea(Sea of Japan) (東海熱收支 의 時.空間的인 分布)

  • 박원선;오임상
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.91-115
    • /
    • 1995
  • Air-sea heat fluxes in the East Sea were estimated from the various ship's data observed from 1961 to 1990 and the JMA buoy #6 data from 1976 to 1985. The oceanic heat transport in the sea was also determined from the fluxes above and the heat storage rate of the upper layer of 200m from the sea surface. In winter, The incoming solar radiation is almost balanced with the outgoing longwave radiation. but the sea loses her heat through the sea surface mainly due to the latent and sensible heat fluxes. The spatial variation of the net surface heat flux is about 100 Wm/SUP -2/, and the maximum loss of heat is occurred near the Tsugaru Strait. There are also lots of heat losses in the southern part of the East Sea, Korea Strait and Ulleung Basin. Particularly, the heat strong loss in the south-western part of the sea might be concerned with the formation of her Intermediate Homogeneous Water. In summer, the sea is heated up to about 120∼140 Wm/SUP -2/ sue to strong incoming solar radiation and weak turbulent heat fluxes and her spatial variation is only about 20 Wm/SUP -2/. The oceanic heat flux is positive in the southeasten part f the sea and the magnitude of the flux is larger than that of the net surface heat flux. This shows the importance of the area. In the southwestern part of the sea, however, the oceanic heat flux is negative. This fact implies cold water inflow, the North Korean Cold Water. The sigh of net surface heat flux is changed from negative to positive in March and from positive to negative in September. The heat content in the upper surface 200 m from the sea surface reaches its minimum in March and maximum in October. The annual variation of the net surface heat flux is 580 Wm/SUP -2/ in southwestern part of the sea. The annual mean values of net surface heat fluxes are negative, which mean the net heat transfer from the sea to the atmosphere. The magnitude of the flux is about 130 Wm/SUP -2/ near the Tsugaru Strait. The net surface fluxes in the Korea Strait and the Ulleung Basin are relatively larger than those of the rest areas. The spatial mean values of surface heat fluxes from 35$^{\circ}C$ to 39$^{\circ}$N are 129, -90, -58, and -32 Wm/SUP -2/ for the incoming solar radiation, latent hear flux, outgoing longwave radiation, and sensible heat flux, respectively.

  • PDF

EFFECT OF FIR FLUXES ON CONSTRAINING PROPERTIES OF YSOS

  • Ha, Ji-Sung;Lee, Jeong-Eun;Jeong, Woong-Seob
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.6
    • /
    • pp.213-223
    • /
    • 2010
  • Young Stellar Objects (YSOs) in the early evolutionary stages are very embedded, and thus they emit most of their energy at long wavelengths such as far-infrared (FIR) and submillimeter (Submm). Therefore, the FIR observational data are very important to classify the accurate evolutionary stages of these embedded YSOs, and to better constrain their physical parameters in the dust continuum modeling. We selected 28 YSOs, which were detected in the AKARI Far-Infrared Surveyor (FIS), from the Spitzer c2d legacy YSO catalogs to test the effect of FIR fluxes on the classification of their evolutionary stages and on the constraining of envelope properties, internal luminosity, and UV strength of the Interstellar Radiation Field (ISRF). According to our test, one can mis-classify the evolutionary stages of YSOs, especially the very embedded ones if the FIR fluxes are not included. In addition, the total amount of heating of YSOs can be underestimated without the FIR observational data.

Radiation Streaming in KNU-1 Reactor Cavity (고리 1호기 원자로 공동에서의 방사선 흐름 현상 해석)

  • Kun-Woo Cho;Chang-Soon Kang
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.27-37
    • /
    • 1986
  • The neutron fluxes and dose rates due to radiation streaming from reactor cavities were evaluated at the KNU-1 reactor pressure vessel (RPY) head flange elevation. To find a suitable cross section data set for the evaluation, a benchmark test was performed for three data sets; DLC-23/CASK, DLC-31/FEWG, and DLC-47/BUGLE. The leakage fluxes from the KNU-1 RPV outer surface were calculated with two different methods: 1-D calculation with ANISN, and 2-D calculation with DOT3.5. The Monte Carlo procedures as embodied in the MORSE-CG code combined with the albedo option were applied to predict the radiation distributions in the cavity region. Finally, the activation analysis of the stud bolts was performed to identify the major activation products.

  • PDF

Daily Variation of Heat Budget Balance in the Gangjeong-Goryung Reservoir for Summertime - Concerning around the Rate of Heat Storage - (낙동강 강정고령보의 여름철 열수지 일변화 - 열 저장량 변동을 중심으로 -)

  • Kim, Seong-Rak;Cho, Chang-Bum;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.721-729
    • /
    • 2015
  • Surface heat balance of the Gangjeong-Goryung Reservoir is analyzed for 12-17 August 2013. Each flux elements at the water surface is derived from the special field observations with application of an aerodynamical bulk method for the turbulent heat fluxes and empirical formulae for the radiation heat fluxes. The rate of heat storage in the reservoir is estimated by using estimated by surface heating rate and the vertical water temperature data. The flux divergence of heat transport is estimated as a residual. The features of the surface heat balance are almost decided by the latent heat flux and the solar radiation flux. On average for 12-17 August 2014 in the Gangjeong- Goryung Reservoir, if one defines the insolation at the water surface as 100 %, 94 % is absorbed in the reservoir; thereafter the reservoir loses about 30~50% by sensible heat, latent heat and net long-wave radiation. The residue of 50~80 % raises the water temperature in the reservoir or transported away by the river flow during the daytime.

A Detailed Analysis of Solar Energy Resources in Korean Peninsula Using a Satellite (인공위성을 이용한 한반도 태양에너지자원 상세 정밀분석)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.68-76
    • /
    • 2012
  • Since the solar energy resource is the main input for sizing any solar energy utilization system, it is essential to utilize the solar radiation data as an application and development of solar energy system increase. It will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 at 16 different locations in Korea and for the more detailed analysis, images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth's surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. From the results, the measured data has been collected at 16 different stations and estimated using satellite at 44 different stations over the Korean peninsula from 1982 to 2010. The Result of analysis shows that the annual-average daily global radiation on the horizontal surface is 3.66 $kWh/m^2/day$ and estimated solar radiation fluxes show reliable results for estimating the global radiation with average deviation of -7.2 to +3.7 % from the measured values.

Measurement of Photo-Neutron Dose from an 18-MV Medical Linac Using a Foil Activation Method in View of Radiation Protection of Patients

  • Yucel, Haluk;Cobanbas, Ibrahim;Kolbasi, Asuman;Yuksel, Alptug Ozer;Kaya, Vildan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.525-532
    • /
    • 2016
  • High-energy linear accelerators are increasingly used in the medical field. However, the unwanted photo-neutrons can also be contributed to the dose delivered to the patients during their treatments. In this study, neutron fluxes were measured in a solid water phantom placed at the isocenter 1-m distance from the head of an18-MV linac using the foil activation method. The produced activities were measured with a calibrated well-type Ge detector. From the measured fluxes, the total neutron fluence was found to be $(1.17{\pm}0.06){\times}10^7n/cm^2$ per Gy at the phantom surface in a $20{\times}20cm^2$ X-ray field size. The maximum photo-neutron dose was measured to be $0.67{\pm}0.04$ mSv/Gy at $d_{max}=5cm$ depth in the phantom at isocenter. The present results are compared with those obtained for different field sizes of $10{\times}10cm^2$, $15{\times}15cm^2$, and $20{\times}20cm^2$ from 10-, 15-, and 18-MV linacs. Additionally, ambient neutron dose equivalents were determined at different locations in the room and they were found to be negligibly low. The results indicate that the photo-neutron dose at the patient position is not a negligible fraction of the therapeutic photon dose. Thus, there is a need for reduction of the contaminated neutron dose by taking some additional measures, for instance, neutron absorbing-protective materials might be used as aprons during the treatment.

Variations of Turbulent Fluxes in the Atmospheric Surface Layer According to the Presence of Cloud (구름 유무에 따른 대기표층 난류속의 변화)

  • de Oliveira Junior, Jose Francisco;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.25 no.2
    • /
    • pp.87-93
    • /
    • 2004
  • To study the effect of cloud on the variabilities of turbulent fluxes over the flat terrain, we used the gradient method to analyze the dynamic and thermodynamic data from the meteorological 9-m mast (0.75, 3 and 9 m) in Villafria airport in Spain. The decrease of the surface wind speed is governed by cooling at the surface following the evening transition. The sensible heat flux and the momentum flux are increased with the dynamic factor rather than the thermodynamic factor, and the sensible heat flux was not affected by the thermal condition. The global radiation did not play an important role in the variation of the sensible heat flux in the cloudy day, but the atmospheric surface layer was characterized rather by the wind intensity.

Spatial Variability of Soil Heat Fluxes in a Conifer Forest (침엽수림에서 토양열 플럭스의 공간 변화)

  • Yun-Ho Park;Byong-Lyol Lee;Kyung-Sook Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.81-86
    • /
    • 2003
  • The spatial variability of soil heat fluxes in a conifer forest was investigated by meteorological measurement. The maximum daily averages of R $s_{dn}$ and Rn were about 260 W $m^{-2}$ and 180 W $m^{-2}$ . The daily average of G was typically 10% of net radiation during mid-July to mid-August. The measured soil heat flux of $G_{6}$ was suitable to calculate G within 2% error during the study period. A time delay in the maximum nux at a depth of 0.1 m by heat storage was observed. About 10 to 15 W $m^{-2}$ of error can occur, if it is neglected.