• Title/Summary/Keyword: Radiation flux

검색결과 558건 처리시간 0.028초

석유류 저장 탱크에서의 액면 및 유츌화재에 대한 복사열의 실험적 연구 (Experimental Study of Radiation Heat Flux for the Pool and Spill Fire in Petroleum Storage Tanks)

  • 김홍;박형주
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.88-93
    • /
    • 2004
  • This experimental study was carried out to evaluate effect of the radiation heat flux for the pool and spill fire in petroleum storage tanks, which were made form steel. Each of them had the capacity of 250, 2500 and 25000 liter, respectively. The effects of the radiation heat flux are as follows; 1) The intensity of radiation heat flux from a flame decreased exponentially with increasing distance from outside wall of tanks, and increased significantly with surface area of tank and dyke. 2) In the case of 25000L tank, the radiation heat flux was about max. 98.9kW/$m^2$ in 1m from wall of tank. 3) The distance, that was able to ignite wood or plastics by radiation heat flux of approximately 12.5kW/$m^2$, was about 3.14m from wall of 25000L tank.

Introduction of Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO)

  • Kubota, Masahisa
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.231-236
    • /
    • 1999
  • Accurate ocean surface fluxes with high resolution are critical for understanding a mechanism of global climate. However, it is difficult to derive those fluxes by using ocean observation data because the number of ocean observation data is extremely small and the distribution is inhomogeneous. On the other hand. satellite data are characterized by the high density, the high resolution and the homogeneity. Therefore, it can be considered that we obtain accurate ocean surface by using satellite data. Recently we constructed ocean surface data sets mainly using satellite data. The data set is named by Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO). Here, we introduce J-OFURO. The data set includes shortwave radiation, longwave radiation, latent heat flux, sensible heat flux, and momentum flux etc. Moreover, sea surface dynamic topography data are included in the data set. Radiation data sets covers western Pacific and eastern Indian Ocean because we use a Japanese geostationally satellite (GMS) to estimate radiation fluxes. On the other hand, turbulent heat fluxes are globally estimated. The constructed data sets are used and shows the effectiveness for many scientific studies.

  • PDF

함평만 갯벌에서 순복사에 의한 토양열 플럭스와 기온의 변동 분석 (Analysis of Variations in Soil Heat Flux and Air Temperature by Net Radiation at a Mud Flat in Hampyeong Bay)

  • 박호선;권병혁;김일규;소윤환;오세봉;강동환
    • 한국환경과학회지
    • /
    • 제26권9호
    • /
    • pp.1101-1110
    • /
    • 2017
  • In this study, we analyze changes in soil heat flux and air temperature in August (summer) and January (winter) according to net radiation, at a mud flat in Hampyeong Bay. Net radiation was observed as $-84.2{\sim}696.2W/m^2$ in August and $-79.4{\sim}352.5W/m^2$ in January. Soil heat flux was observed as $-80.7{\sim}139.5Wm^{-2}$ in August and $-49.09{\sim}137W/m^2$ in January. Air temperature was observed as $24.2{\sim}32.9^{\circ}C$ in August and $-1.5{\sim}11.1^{\circ}C$ in January. The rate of soil heat flux for net radiation ($H_G/R_N$) was 0.17 in August and 0.34 in January. Because the seasonal fluctuation in net radiation was bigger than the soil heat flux, net radiation in August was bigger than in January. We estimated a linear regression function to analyze variations in soil heat flux and air temperature by net radiation. The linear regression function and coefficient of determination for the soil heat flux by net radiation was y=0.19x-7.94, 0.51 in August, and y=0.39x-11.69, 0.81 in January. The time lag of the soil heat flux by net radiation was estimated to be within ten minutes in August 2012 and January 2013. The time lag of air temperature by net radiation was estimated at 160 minutes in August, and 190 minutes in January.

기상 조건에 따른 도시 캐노피 모형의 성능 비교 (Performance Comparison of an Urban Canopy Model under Different Meteorological Conditions)

  • 유영희;백종진;이상현
    • 대기
    • /
    • 제22권4호
    • /
    • pp.429-436
    • /
    • 2012
  • The performances of the Seoul National University Urban Canopy Model (SNUUCM) under different meteorological conditions (clear, cloudy, and rainy conditions) in summertime are compared using observation dataset obtained at an urban site. The daily-averaged net radiation, sensible heat flux, and storage heat flux are largest in clear days and smallest in rainy days, but the daily-averaged latent heat flux is similar among clear, cloudy, and rainy days. That is, the ratio of latent heat flux to net radiation increases in order of clear, cloudy, and rainy conditions. In general, the performance of the SNUUCM is better in clear days than in cloudy or rainy days. However, the performance in simulating sensible heat flux in clear days is as poor as that in rainy days. For all the meteorological conditions, the performance in simulating latent heat flux is worst among the performances in simulating net radiation, sensible heat flux, and latent heat flux. The normalized mean error for latent heat flux is largest in rainy days in which the relative importance of latent heat flux in the surface energy balance becomes greatest among the three conditions. This study suggests that improvements to the parameterization of processes that are related to latent heat flux are particularly needed.

온돌면(溫突面)의 방열량(放熱量) 산정방법(算定方法)에 관한 연구(硏究) (A Calculation Method on Heat Flux from Ondol Floor Surface)

  • 손장열;안병욱;방승기
    • 설비공학논문집
    • /
    • 제1권2호
    • /
    • pp.173-181
    • /
    • 1989
  • Until recently there was a lack of reliable performance data for the design and operation of Ondol heating systems. This paper presents a calculation method on heat flux from Ondol floor surface. Total heat flux from floor consists of radiation and convection component. In order to analyse the characteristics of both radiation and convection heat flux, each surface temperature is measured and several temperatures near each wall are measured vertically and horizontally in a practical Ondol heating space. Radiation heat flux is calculated and analysed by Gebhart's Absorption Factor Method with the consideration of instantaneous radiant exchanges. Convection heat output is derived from the vertical temperature profiles near floor. The vertical temperature profiles could be expressed by nonlinear regression equation models and convection coefficients could be estimated by the equations. As a result, radiation, convection and total heat flux are suggested by the expression of difference between floor surface and room air temperature.

  • PDF

건물과 수목의 그림자에 의한 도시의 열 분포 산정 및 저감효과 연구 (Estimating the urban radiation heat flux distribution and the reduction effect of building and tree shade)

  • 박채연;이동근;윤준하
    • 한국환경복원기술학회지
    • /
    • 제21권6호
    • /
    • pp.1-13
    • /
    • 2018
  • Mapping radiation heat flux of urban area is essential for urban design and landscape planning. Because controlling urban geometry and generating green space are important urban design strategies for reducing urban heat, urban planner and designer need to recognize the micro urban heat distribution for adequate urban planning. This study suggests a new methodology for mapping urban radiation heat flux in a micro scale considering buildings and trees' shade. For doing that, firstly, we calculate net radiation for each urban surfaces (building, road (not shaded, building shaded, tree shaded), ground (not shaded, building shaded, tree shaded), tree (not shaded, building shaded)). Then, by multiplying the area ratio of surfaces to the net radiation, we can obtain the radiation heat flux in micro-scale. The estimated net radiation results were found to be robust with a $R^2$ of 90%, which indicates a strong explanatory power of the model. The radiation heat flux map for 12h $17^{th}$ August explains that areas under the building and tree have lower net radiation heat flux, indicating that shading is a good strategy for reducing incident radiation. This method can be used for developing thermal friendly urban plan.

중성자(中性子) 및 감마선(線)에 대한 선량율(線量率) 환산인자(換算因子) 계산(計算) (Calculation of Neutron and Gamma-Ray Flux-to-Dose-Rate Conversion Factors)

  • 권석근;이수용;육종철
    • Journal of Radiation Protection and Research
    • /
    • 제6권1호
    • /
    • pp.8-24
    • /
    • 1981
  • This paper presents flux-to-dose-rate conversion factors for neutrons and gamma rays based on the American National Standard Institute(ANSI) N666. These data are used to calculated the dose rate distribution of neutron and gamma ray in radiation fields. Neutron flux-to-dose-rate conversion factors for energies from $2.5{\times}10^{-8}$ to 20 MeV are presented; the corresponding energy range for gamma rays is 0.01 to 15 MeV. Flux-to-dose-rate conversion factors were calculated, under the assumption that radiation energy distribution has nonlinearity in the phantom, have different meaning from those values obtained by monoetiergetic radiation. Especially, these values were determined with the cross section library. The flux-to-dose-rate conversion factors obtained in this work were in a good agreement to the values presented by ANSI. Those data will be a useful for the radiation shielding analysis and the radiation dosimetry in the case of continuous energy distributions.

  • PDF

일조시간을 이용한 대구지방 광합성 광자선속밀도의 추정 (Using Sunshine Duration to Estimate Photosynthetic Photon Flux Density at Taegu Korea)

  • Suh, KyeHong
    • The Korean Journal of Ecology
    • /
    • 제19권1호
    • /
    • pp.65-70
    • /
    • 1996
  • The daily photosynthetic photon flux density incident on a horizontal surface was estimated with sunshine duration through daily global radiation at Taegu in Korea. The constant and coefficient of $\AA$ngstrom equation for global radiation were calculated as 0.1763 and 0.5012, respectively. The conversion factor from daily global radiation to daily photosynthetic photon flux density was determined as 2.2359.

  • PDF

고흥만 습지에서 증발산량의 산출 방법 (Estimation Method of Evapotranspiration over Goheung bay Wetland)

  • 권병혁;김동수;김근회;강동환
    • 한국습지학회지
    • /
    • 제10권1호
    • /
    • pp.21-30
    • /
    • 2008
  • 증발산은 지표와 대기 사이에서 일어나는 에너지 상호작용에 기여하는 중요한 요소 중 하나이다. 갈대로 덮인 고흥만 간척지에서 현열, 토양열 그리고 순복사를 측정하여 증발산량을 조사하였다. 자동기상관측 자료로부터 산출된 증발산량은 구름과 바람의 연직경도가 $1s^{-1}$보다 미약한 경우를 제외하고 열수지 방정식으로 추정한 값과 잘 일치하였다. 토양열은 순복사의 약 10%로 평가되었다. 갈대로 구성된 식생캐노피 내에서 온도에 따른 포화수증기압의 변화율($${\Delta}{\sim_=}de_s/dT$$)이 약 1.5로 근사되었고, 증발산량은 순복사 에너지의 함수로 설명될 수 있다.

  • PDF

플럭스 타워 관측 자료 및 통합수문모형을 이용한 순복사량 산정: 설마천, 청미천 유역을 대상으로 (Net Radiation Estimation Using Flux Tower Data and Integrated Hydrological Model: For the Seolmacheon and Chungmichen Watersheds)

  • 김다은;백종진;정성원;최민하
    • 한국수자원학회논문집
    • /
    • 제46권3호
    • /
    • pp.301-314
    • /
    • 2013
  • 기후변화로 야기될 수 있는 태양복사에너지의 공간적인 불균형은 수자원을 포함한 전반적인 생태 시스템에서의 에너지 불균형을 초래한다. 따라서 정확한 에너지의 흐름을 이해하기 위하여 정량적인 관측을 목적으로 하는 플럭스 타워가 세계 곳곳에 설치되어 운영되고 있다. 국내의 주역에서도 플럭스 타워를 통안 관측이 실시되고 있는 데, 본 연구에서는 이 중 설마천과 청미천 유역의 플럭스 타워의 자료를 대상으로 수문기상 및 생태학적으로 중요한 역할을 하는 에너지원인 하향 단파 및 장파 복사량과 순복사량을 기존의 연구에서 제안된 물리식을 기반으로 계산하고, 산정된 순복사량과 관측 자료를 비교 검증하였다. 이를 통하여 관측이 미흡한 수문기상인자에 대해 기존의 물리적인 방법의 사용 가능성 및 관측 자료의 활용 가능성을 확인하였다.